Mortality due to Air Pollution at Low levels of Exposure (MAPLE)

Michael Brauer

School of Population and Public Health

THE UNIVERSITY OF BRITISH COLUMBIA

HEI/ERS/WHO, January 21, 2020. Brussels

Cohorts

Canadian Community Health Surveys (CCHS)

Depth:

Baseline = 2001-2012

n=540,900, 4-15 yrs follow-up

20% mandatory response to long-form census:

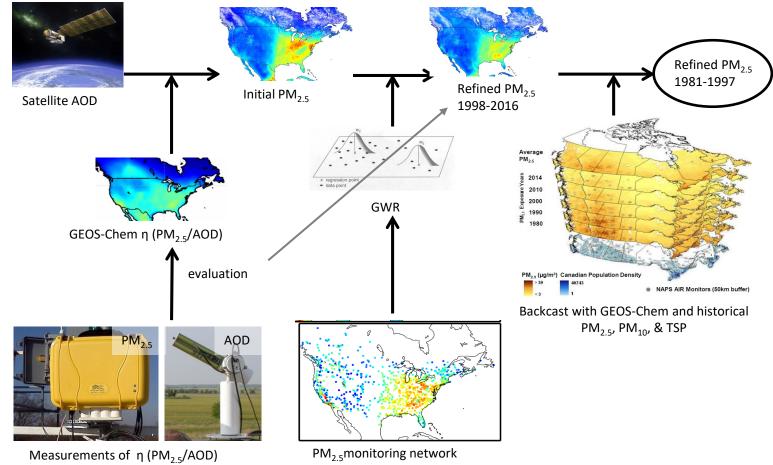
Size:

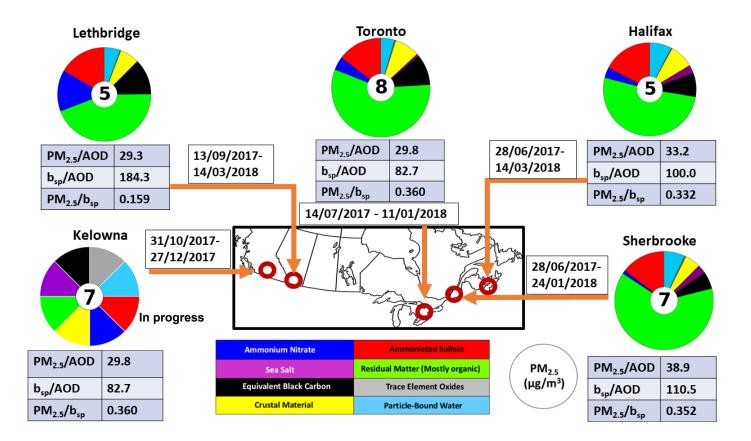
1991: 2.5M 1996: 3.5M 2001: 3.5M

Nationally-representative

Death registry and tax records (residential history) through 2016

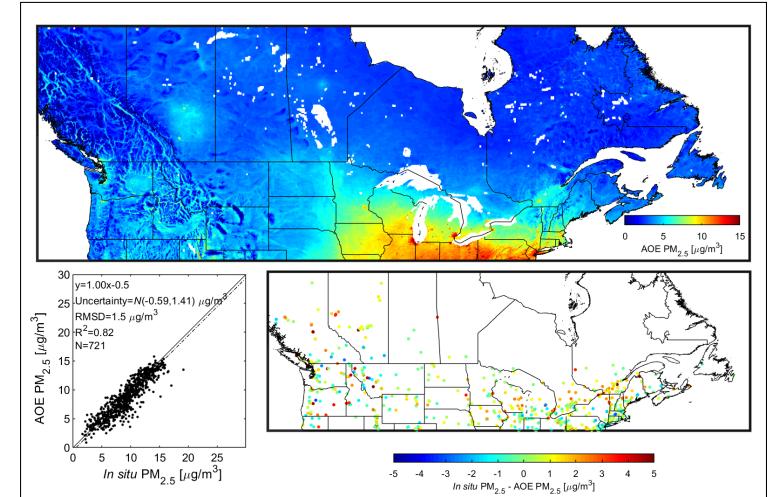
Many socioeconomic covariates

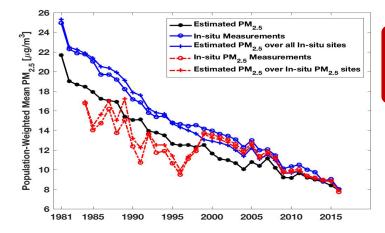

Self-reported health behaviours (BMI, diet, physical activity, smoking, alcohol consumption)


~10 million subjects

up to 25 yrs follow-up

Canadian Census Health & Environment Cohorts (CanCHEC)

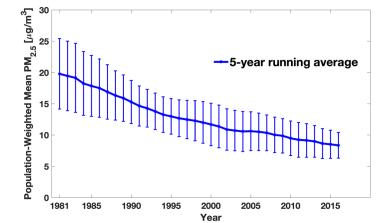

Exposure estimation



Not final results

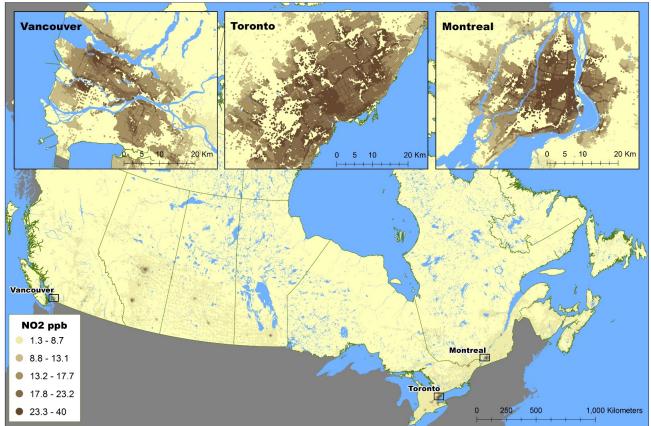
Exposure estimation

Exposure backcasting (1981 – 1997)

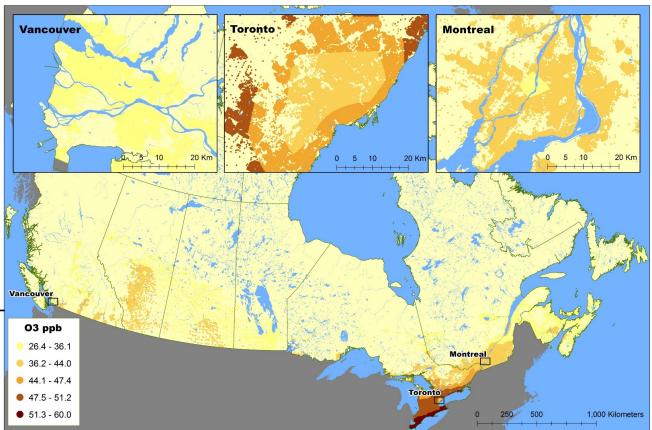

Backcasting with historical ground-based measurements of PM_{2.5}, PM₁₀, and TSP, remote sensing, chemical transport model, and elevation data

Captures temporal & spatial changes in concentrations over time

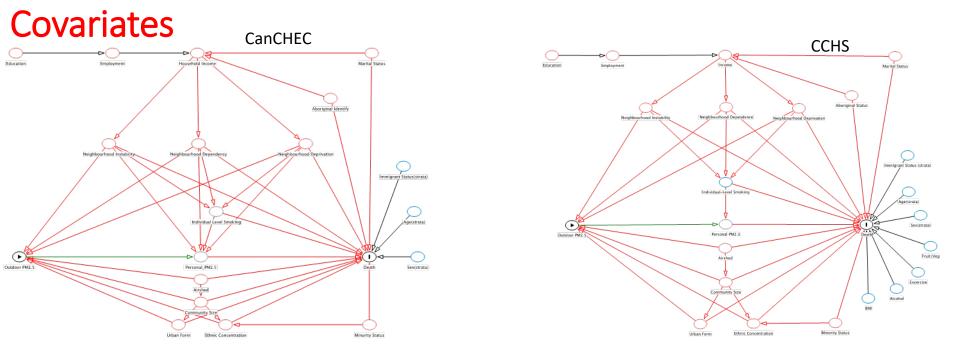
Estimates from nearest grid cell assigned to residential postal codes



Meng et al., ES&T 2019


NO₂ Estimation

- LUR model (satellite estimates, road length (10 km), area of industrial land use (2 km), mean summer rainfall
- 2006 annual mean concentrations (~10 m)
- Year-adjusted using groundbased time-series measurements from 24 Census Divisions (1981 – 2016)

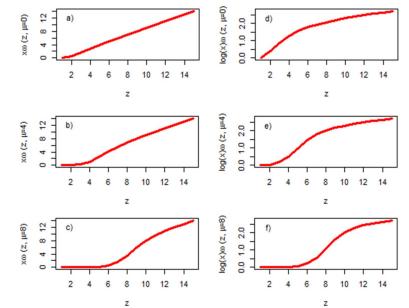


O₃ Estimation

- Linear combination of hourly modelled (CTM forecast) ozone surface and ground-based observations
- Mean daily 8-hour max.
 warm season (1 May–31
 October) concentration,
 2002-16 (11 21 km)
- Year-adjusted using groundbased time-series measurements from 24 Census Divisions (1981 -2016)

Robichaud A, Ménard R. 2014. Multi-year objective analyses of warm season ground-level ozone and PM2.5 over North America using real-time observations and the Canadian operational air quality models. Atmospheric Chemistry and Physics 14(4):1769-1800.

DAG Model: Airshed, Community Size, Urban Form, (Ethnic Concentration, Dependency, Deprivation, Instability) + strata for age, sex, immigrant status (cohort)


Full model (+ available individual-level covariates)

CanCHEC: income, education, marital status, indigenous identity, employment status, occupational class, visible minority status, and years since immigrating to Canada

CCHS: + fruit and vegetable consumption, leisure exercise frequency, alcohol consumption, smoking, BMI

Analysis

- Cox Proportional Hazards
- Non-accidental deaths
- Primary exposure time-window is a 3-year moving average with 1-year lag
 - (e.g. exposure for person-year in 2001 = mean of 1998, 1998, 2000)
- Evaluate shape with restricted cubic splines (RC) (15 knots) and Shape Constrained Health Impact Function (SCHIF)
- Evaluate sensitivity of associations to:
 - Exposure time-windows (1 8 yrs)
 - Spatial scales (1-km² vs 10-km²)
 - Sub-populations (e.g. immigrant status)
 - Co-pollutants

Nasari et al. Air Qual Atmos Health. A class of non-linear exposure-response models suitable for health impact assessment applicable to large cohort studies of ambient air pollution. 2016; 9(8): 961–972. doi: 10.1007/s11869-016-0398-z

Crouse et al., Epidemiology 2019; Erickson et al., 2020

Results: CCHS

- One of largest analyses of PM_{2.5} and mortality including individual-level behavioural risk factors (4.4 million person-years)
- Over 50k deaths from non-accidental causes; up to 15 years follow-up
- Annual average PM_{2.5} concentration: 5.9 μg/m³ (s.d. 2.0)

Full (CanCHEC) model: [individual-level SES and contextual (e.g. city size, marginalization) covariates

+ behavioural covariates (fruit and vegetable consumption, leisure exercise frequency, alcohol consumption, and smoking behaviours) HR per 10 μg/m³ PM_{2.5}

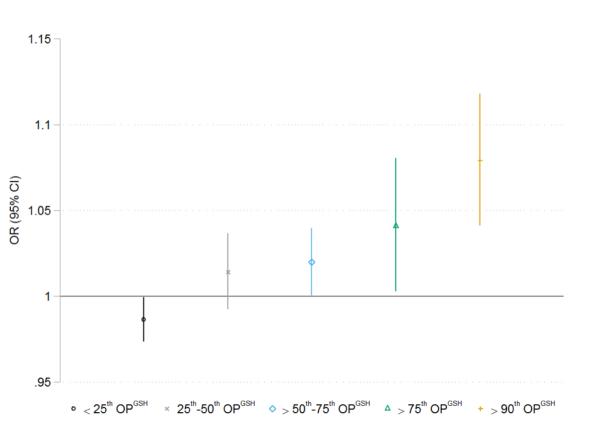
1.13 (1.06-1.21)

1.11 (1.04-1.18)

Christidis et al., Environmental Health, 2019

Results: CanCHEC

- ~8.5 million individuals (151 million person-years)
- ~1.5 million deaths; up to 25 years of follow-up
- Annual average PM_{2.5} concentration: 7.4 μg/m³ (s.d. 2.9)


DAG model: contextual (e.g. city size, marginalization) covariates 1.044 (1.031 – 1.056)

Full (CanCHEC) model: [individual-level SES and contextual(e.g. city size, marginalization) covariates1.053 (1.041 - 1.065)

+ NO₂ + O₃ + Ox 1.043 (1.030 - 1.056) 0.982 (0.970 - 0.994) 0.955 (0.943 - 0.968)

Pappin et al., 2019.

ER Visits: Myocardial Infarction (per 5 ug/m³)

Between-City Differences in PM_{2.5} OP Modify Risk of Acute MI

Weichenthal et al. Environmental Health (2016) 15:46 DOI 10.1186/s12940-016-0129-9

Environmental Health

Open Access

RESEARCH

Ambient $PM_{2.5}$ and risk of emergency room visits for myocardial infarction: impact of regional $PM_{2.5}$ oxidative potential: a case-crossover study

Scott Weichenthal^{1*}, Eric Lavigne¹, Greg Evans², Krystal Pollitt³ and Rick T. Burnett¹

ER Visits: Myocardial Infarction (per 5 ug/m³)

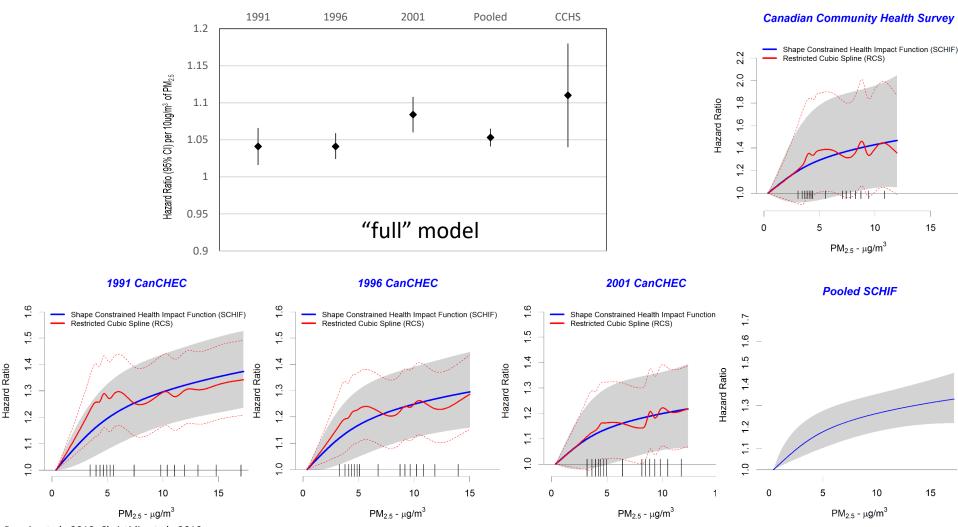
	_	-	-	-	
Percentile of 3-day mean O _x ^{wt}	Percentile of Regional OP ^{GSH}				
	≤50 th	>50 th	>75 th	>90 th	
≤50 th	-2.0 (-5.0, 1.0)	0.57 (-4.0, 5.0)	2.9 (-1.2, 7.2)	6.0 (0.0, 13)	
>50 th	1.5 (-0.6, 3.6)	5.5 (3.0, 8.0)	6.4 (2.0, 11)	10 (7.5, 13)	
>75 th	1.5 (-1.3, 4.4)	5.7 (2.5, 9.1)	6.7 (1.8, 12)	13 (6.8, 19)	
>90 th	1.4 (-4.6, 7.8)	9.0 (3.5, 15)	9.2 (0.46, 19)	29 (26, 33)	

Risk estimates reflect a 5 μ g/m³ change in PM_{2.5}. All models are adjusted for 3-day mean ambient temperature and relative humidity (cubic splines)

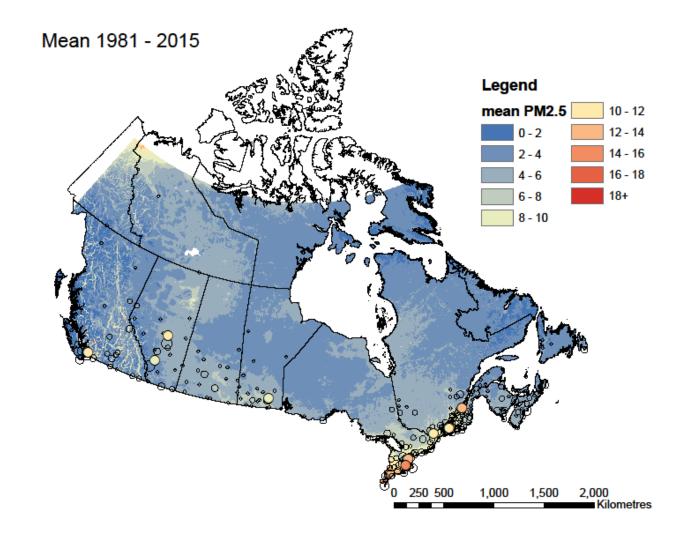
The largest risk is observed in regions with high PM_{2.5} OP <u>and</u> high

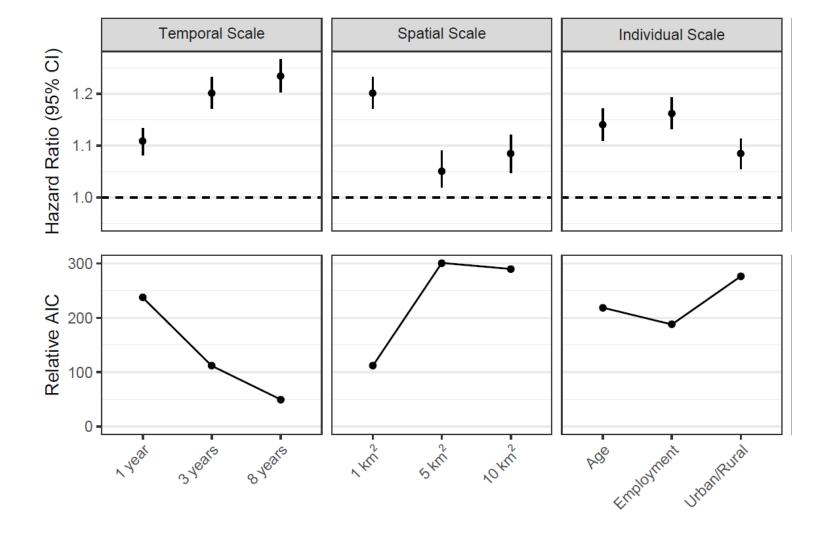
Weichenthal et al. Environmental Health (2016) 15:46 DOI 10.1186/s12940-016-0129-9

Environmental Health


Open Access

RESEARCH


 O_{x}


Ambient $PM_{2.5}$ and risk of emergency room visits for myocardial infarction: impact of regional $PM_{2.5}$ oxidative potential: a case-crossover study

Scott Weichenthal^{1*}, Eric Lavigne¹, Greg Evans², Krystal Pollitt³ and Rick T. Burnett¹

Pappin et al., 2019: Christidis et al., 2019

In progress

(further) Refined exposure estimates

Specific causes of death

Restricted exposure analyses (12, 10, 8, or 6 µg/m³)

Summary points

- In both cohorts, supra-linear association between PM_{2.5} and nonaccidental mortality (to concentrations as low as 5 μg/m³ or lower)
- No evidence of threshold or sub-linear association
- Associations not affected substantially by adjustment for smoking or other health behaviours

Publications

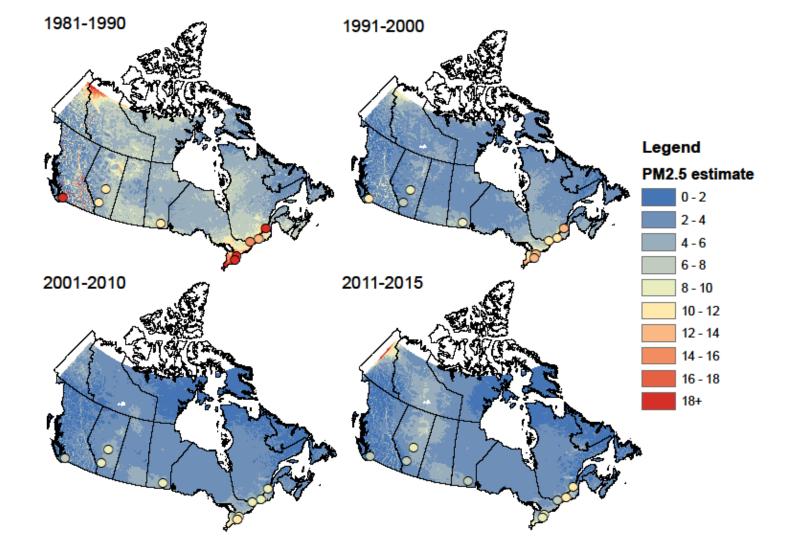
- Latimer and Martin. Interpretation of measured aerosol mass scattering efficiency over North America using a chemical transport model. Atmos. Chem. Phys. 2019
- Meng et al. Estimated long-term (1981-2016) concentrations of ambient fine particulate matter across North America from chemical transport modeling, satellite remote sensing and ground-based measurements. Environ Sci Technol. 2019
- Erickson et al. Evaluation of a method to indirectly adjust for unmeasured covariates in the association between fine particulate matter and mortality. Environ Res. 2019
- **Crouse et al.** Evaluating the sensitivity of PM_{2.5}-mortality associations to the spatial and temporal scale of exposure assessment at low particle mass concentrations. Epidemiology. 2019
- Christidis et al. Low concentrations of fine particle air pollution and mortality in the Canadian Community Health Survey cohort. Environmental Health. 2019
- **Pappin et al.** Nonlinear associations between low levels of fine particulate matter and mortality across three cycles of the Canadian Census Health and Environment Cohort. EHP. 2019
- Erickson et al. Disease assimilation: the mortality impacts of fine particulate matter on immigrants to Canada. Health Reports. 2020
- Pinault et al. Diabetes status and susceptibility to the effects of PM_{2.5} exposure on cardiovascular mortality in a national Canadian cohort. Epidemiology. 2018
- **Pinault et al.** Associations between fine particulate matter and mortality in the 2001 Canadian Census Health and Environment Cohort. Environ Res. 2017

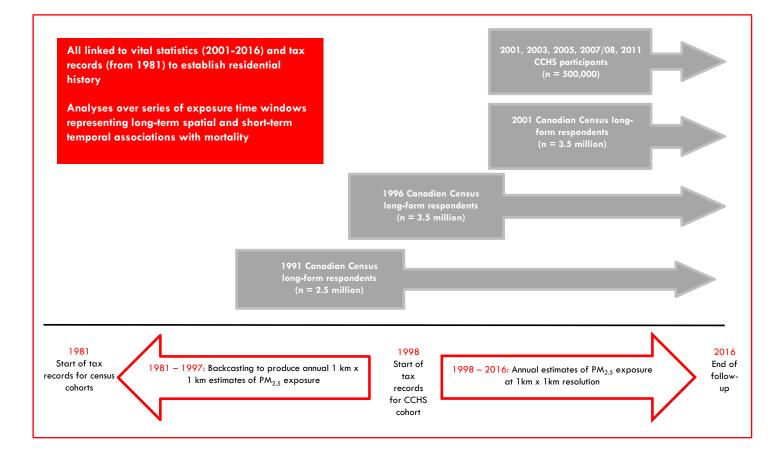
MAPLE Team

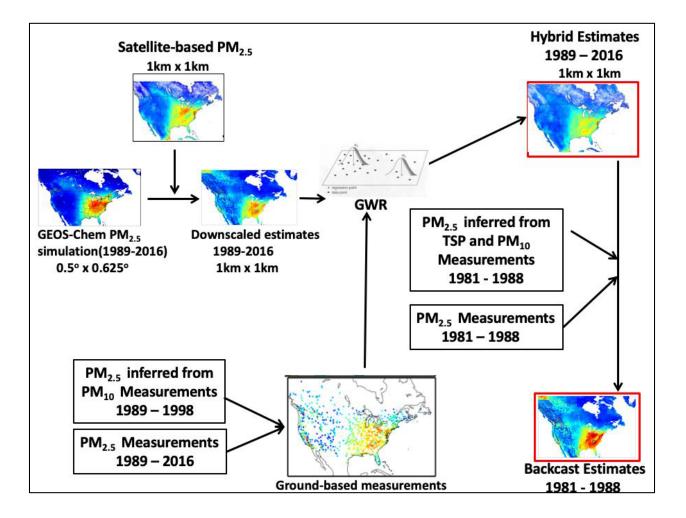
Michael Brauer, The University of British Columbia Jeffrey Brook, University of Toronto Rick Burnett, Health Canada Tanya Christidis, Statistics Canada Yen Chu, University of British Columbia Dan Crouse, University of New Brunswick Anders Erickson, The University of British Columbia Perry Hystad, Oregon State University Chi Li, Dalhousie University

Jun Meng, Dalhousie University

Amanda Pappin, Statistics Canada Lauren Pinault, Statistics Canada Randall Martin, Dalhousie University Alain Robichaud, Environment & Climate Change Canada Michael Tjepkema, Statistics Canada Richard Ménard, Environment & Climate Change Canada Aaron van Donkelaar, Dalhousie University Scott Weichenthal, McGill University




THANK YOU

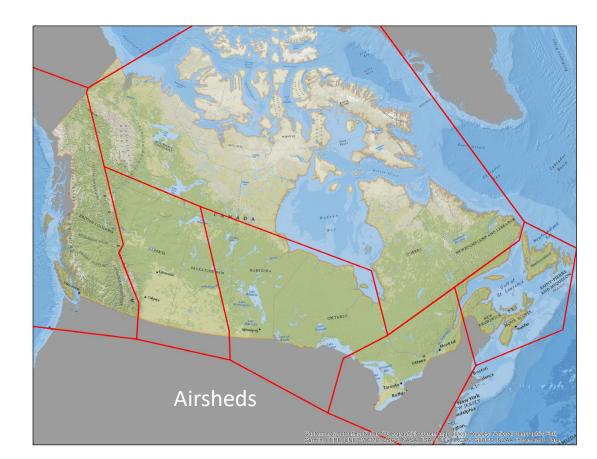

michael.brauer@ubc.ca

EXTRA SLIDES



Cohorts and follow-up

SPARTAN network expansion



Geographic Identifiers & Contextual Covariates

Regional airsheds

Neighbourhood-level marginalization:

- material deprivation
- residential instability
- dependency
- ethnic concentration

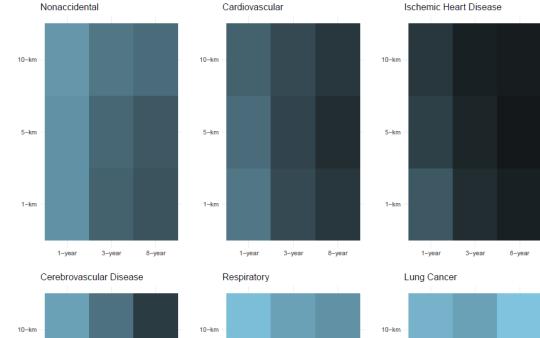
Geographic Identifiers & Contextual Covariates

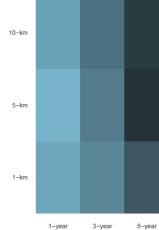
Community size

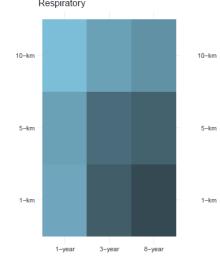
(6 levels. small town \rightarrow large city)

Urbanization

(4 levels. transit reliant suburb \rightarrow urban core,)




Individual and contextual covariates


Individual Variables at Baseline	CanCHEC	CCHS
Income	х	Х
Education	х	Х
Occupation	х	some
Immigration (time, source region)	х	Х
Ethnicity	х	Х
Household composition (marital status, living arrangements)	х	Х
Housing (type, tenure, repair)	х	Х
Education	х	Х
Aboriginal identity	х	Х
Alcohol consumption		Х
Smoking (current, former)		Х
Fruit and vegetable consumption		Х
Physical activity		Х
Body mass index		Х
Contextual Variables	Source	
% unemployed, % low income, % low education, % recent immigrants	Census	
Social deprivation (CanMARG)	Census-derived Index	
Population centre size, Airshed, Climate zone	Regional	

Individual and contextual covariates

Individual Variables at Baseline	Harvard	CanCHE C	ССНЅ
Income	X (Medicaid eligible)	Х	Х
Education	(contextual)	х	Х
Occupation		Х	some
Immigration (time, source region)		х	Х
Ethnicity	x	х	Х
Household composition (marital status, living arrangements)		х	Х
Housing (type, tenure, repair)	(contextual)	х	Х
Education	(contextual)	х	Х
Aboriginal identity	(contextual)	х	Х
Alcohol consumption	(contextual, BRFSS)		Х
Smoking (current, former)	(contextual, BRFSS)		Х
Fruit and vegetable consumption	(contextual, BRFSS)		х
Physical activity	(contextual, LDL-C, A1C + other BRFSS)		Х
Body mass index	(contextual, BRFSS)		Х
Contextual Variables		So	urce
% unemployed, % low income, % low education, % recent immigrants	Household Income, Home Value, Education Rate, Owner Occupied Housing, Hispanic/Black Population	Census	

1-year

3-year

8-year

Hazard Ratio

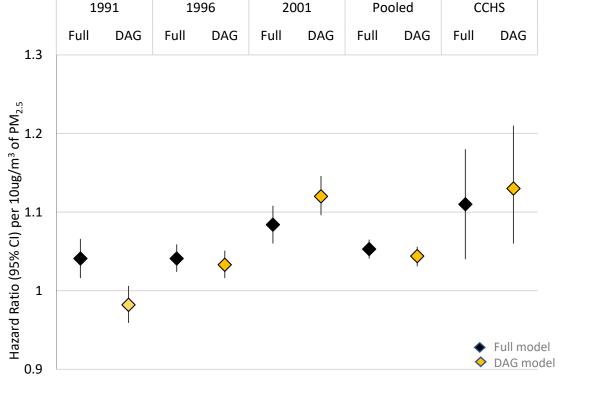


Figure 2. Hazard Ratio estimates and 95% confidence intervals for the association between PM_{2.5} and non-accidental mortality for Full and DAG-informed models