Current and future burden of disease from major air pollution sources in India Michael Brauer

Institute for Health Metrics and Evaluation

Photo: Sajjad Hussain/Agence France-Presse — Getty Images

Air pollution is a major health risk factor in India

Estimating (global) disease burden from air pollution

Combining satellite and ground monitoring to estimate exposure

 $\log(PM_{2.5}) = \beta_0 + \beta_1 \log(SAT_i) + \beta_{3..n} + \varepsilon_i$

Spatially varying determinants of AOD – PM2.5 relationship + hierarchical random effects

Ground measurements **N = 6003,** from 107 countries

25 $PM_{2.5}$ **411** PM_{10} from India

Median $R^2 = 0.91$ Median popwtd RMSE = 12.1 µg/m³

~11 x 11 km resolution, annual average

Shaddick et al. 2018. Data integration model for air quality: a hierarchical approach to the global estimation of exposures to ambient air pollution. J. R. Stat. Soc. C, 67: 231–253. doi:10.1111/rssc.12227

Using worldwide health data to relate exposure to disease risk

Burnett et al. 2014; Cohen/Brauer et al. 2017

GBD disease burden modeling

- 1. Identifies all accessible data sources on diseases, injuries, risks, sequelae and mortality.
- 2. Translates data into comparable units, definitions and categories, map variants of the ICD.
- **3.** Assesses samples and definitions for potential errors and inconsistencies.
- 4. Statistically checks relationships among data sources, correct for known biases.
- 5. Improves predictions where data are sparse, by using covariates and interpolations across time or space.
- 6. Checks validity of statistical methods by using out-of-sample prediction.

GBD Data and Model Flow Chart

All GBD data presented with 95% uncertainty intervals.

Demographics play an important role

Increasing non-communicable diseases

If air pollution is a major health risk factor....

If air pollution is a major health risk factor....

• Develop current and future emissions inventories

• Simulate the fraction of ambient PM_{2.5} due to each major source

 Estimate the GBD 2015 population exposure to each source

Isolating the contributions of major sources

Distributed Diesel

Transportation

99.9% of Indian population lives in areas > WHO (annual average) Air Quality Guideline (90% in areas > WHO Interim Target 1 (35 μg/m³)

Population-weighted PM_{2.5} source contributions

Source Sector	% Contribution			
	All India	Rural	Urban	
Residential Biomass	23.9	24.2	22.1	
Anthropogenic Dust	8.9	8.8	9.6	
Industrial Coal	7.7	7.6	8.5	
Power Plant Coal	7.6	7.5	8.0	
Open Burning	5.5	5.5	5.6	
Brick Production	2.2	2.1	2.2	
Transport	2.1	2.1	2.1	
Distributed Diesel	1.8	1.8	1.4	

PM_{2.5} attributable mortality in 2015

Source Sector	Deaths
PM _{2.5} (all sources)	1,090,000
Residential Biomass	268,000
Anthropogenic Dust	100,000
Industrial Coal	82,000
Power Plant Coal	83,000
Open Burning	66,000
Brick Production	24,000
Transport	23,000
Distributed Diesel	20,000

Majority of burden falls on rural population

Number of Deaths Attributable to PM_{2.5} (thousands)

Larger impact of specific sources on rural populations

% Difference in Rural - Urban DALYs/100,000

Evaluating future scenarios (2030, 2050)

Scenario	Energy and emission control policy
REF (reference)	Current legislation and (2005-2015) technology diffusion rates.
S2 (ambitious)	Energy efficiency (NDC) targets for GHG emissions (thermal power and industry); environmental legislation through auto-fuel policy; emission standards in brick production; cleaner technologies in residential and informal industry sectors.
S3 (aspirational)	Total shift away from traditional biomass technologies (residential and informal industry) and from open field burning; 80-85% non-coal electricity generation

Shifts in technologies and practices

Power plant	Share of renewable energy (40% by 2030) as targeted in India's NDC; negligible flue gas desulphurization from a slow adoption of recent regulation (MoEFCC, 2015).		
Industry	Modest increases in energy efficiency (62-84%) under the Perform Achieve and Trade (PAT) scheme (Level 2, IESS, Niti Aayog, 2015).		
Transport	Promulgated growth in public vehicle share (25-30%) (NTDPC, 2013; Guttikunda and Mohan, 2014; NITI Aayog, 2015); slow shifts to BS-VI standards (MoRTH, 2016 ICRA, 2016).		
Bricks & Informal Ind.	Modest increases in non-fired-brick walling materials (30-45%) (UNDP, 2009; Maithel, personal communication, 2016); slow shift to zig-zag fired brick kilns / clean tech in informal industry.		
Residential	Modest shift (55% in 2030 and 70% in 2050) to energy efficient technologies and fuels (Level 2, IESS, Niti Aayog, 2015).		
Open burning	No shift away from agricultural residue burning.		
	S3 - Future policies		
	S3 - Future policies		
Power plant	S3 - Future policies Large shift (75-80%) to non-fossil power generation (Anandarajah and Gambhir 2014; Shukla and Chaturvedi 2012; Level 4, IESS, Niti Aayog, 2015); 80-95% use of flue gas desulphurization.		
Power plant Industry	S3 - Future policiesLarge shift (75-80%) to non-fossil power generation (Anandarajah and Gambhir 2014; Shukla and Chaturvedi 2012; Level 4, IESS, Niti Aayog, 2015); 80-95% use of flue gas desulphurization.Near complete shift to high efficiency (85-100%) industrial technologies (Level 4, IESS, Niti Aayog, 2015).		
Power plant Industry Transport	S3 - Future policiesLarge shift (75-80%) to non-fossil power generation (Anandarajah and Gambhir 2014; Shukla and Chaturvedi 2012; Level 4, IESS, Niti Aayog, 2015); 80-95% use of flue gas desulphurization.Near complete shift to high efficiency (85-100%) industrial technologies (Level 4, IESS, Niti Aayog, 2015).Large shifts to public vehicles (40-60%) (NITI Aayog, 2015), BS-VI syandards, efficient engine technology (MOP, 2015), electric/CNG vehicle share (20-50%) (NITI Aayog, 2015).		
Power plant Industry Transport Bricks & Informal Ind.	S3 - Future policies Large shift (75-80%) to non-fossil power generation (Anandarajah and Gambhir 2014; Shukla and Chaturvedi 2012; Level 4, IESS, Niti Aayog, 2015); 80-95% use of flue gas desulphurization. Near complete shift to high efficiency (85-100%) industrial technologies (Level 4, IESS, Niti Aayog, 2015). Large shifts to public vehicles (40-60%) (NITI Aayog, 2015), BS-VI syandards, efficient engine technology (MoP, 2015), electric/CNG vehicle share (20-50%) (NITI Aayog, 2015). Large share of non-fired brick walling materials (40-70%), complete move to zig-zag fired / VSBK kilns; gasifiers / clean technologies in informal industries (65-80%).		
Power plant Industry Transport Bricks & Informal Ind. Residential	S3 - Future policiesLarge shift (75-80%) to non-fossil power generation (Anandarajah and Gambhir 2014; Shukla and Chaturvedi 2012; Level 4, IESS, Niti Aayog, 2015); 80-95% use of flue gas desulphurization.Near complete shift to high efficiency (85-100%) industrial technologies (Level 4, IESS, Niti Aayog, 2015).Large shifts to public vehicles (40-60%) (NITI Aayog, 2015), BS-VI syandards, efficient engine technology (MoP, 2015), electric/CNG vehicle share (20-50%) (NITI Aayog, 2015).Large share of non-fired brick walling materials (40-70%), complete move to zig-zag fired / VSBK kilns; gasifiers / clean technologies in informal industries (65-80%).Large shifts (90% in 2030 and 100% in 2050) to LPG/PNG/electric cooking (Level 4, IESS, Niti Aayog, 2015), (100% in 2030) electric and solar lighting (National Solar Mission 2010).		

Management can effectively reduce concentrations...

...but continuing challenge of demographics

Source contributions will also change

Increasing importance of coal Challenge of open burning

Dust

Source/Sector

Exposure reductions do make a difference!

DALYs Rate/100k, by Cause Comparison - All Ambient PM_{2.5}

Strengths

- Utilizes state-of-the-art Indian data on emissions, exposure, health burden
- Comprehensive, national/sub-national
- Future scenarios

Strengths and Limitations

- Utilizes state-of-the-art Indian data on emissions, exposure, health burden
- Comprehensive, national/sub-national
- Future scenarios
- Emissions scenarios

- Health and demographic trends
- Assumption of equitoxicity
- Resolution of source contributions likely underestimates transportation impacts in urban areas
- Transboundary pollution (and impacts)
- Other pollutants (Ozone, NOx)

Summary

- In 2015, PM_{2.5} air pollution responsible for ~10 % of deaths in India
 - ~1.1. million deaths (75% amongst rural population)
- Residential biomass burning is the largest contributing source
 - coal combustion, agricultural burning, dust
 - transportation, distributed diesel, brick production also important
- Without action in 2050:
 - population exposures increase > 40%
 - attributable deaths more than triple
- 1.2 million deaths in 2050 can be avoided by aggressive action in major sectors

Thank you!

Questions?

Photo: Ecobrick.in

EXTRA SLIDES

Windblown Mineral Dust

Transboundary pollution

A. Absolute Contribution

B. Percentage Contribution

Demographics plays a key role

Demographics plays a key role

Estimated disease burden in 2015, India

Source Sector	Urban – Rural % Difference
PM _{2.5} (all sources)	27
Residential Biomass	34
Anthropogenic Dust	24
Industrial Coal	22
Power Plant Coal	25
Open Burning	32
Brick Production	30
Transport	31
Distributed Diesel	44

Table 4. Source Sector Contributions to PM _{2.5} -Attributable Deaths (95% UI) in India, 2015				
Source Sector	All India	Rural India	Urban India	
	(95% UI)	(95% UI)	(95% UI)	
All ambient PM _{2.5}	1,090,400	815,300	275,000	
	(939,600 to 1,254,600)	(693,200 to 944,300)	(240,800 to 310,900)	
Residential biomass	267,700	204,800	62,900	
	(230,600 to 309,300)	(175,000 to 238,700)	(54,600 to 71,100)	
Total coal	169,300	124,500	44,800	
	(145,900 to 193,000)	(106,100 to 143,300)	(39,000 to 50,800)	
Industrial coal	82,100	60,200	21,900	
	(70,400 to 93,900)	(51,400 to 69,300)	(19,000 to 24,900)	
Powerplant coal	82,900	61,400	21,500	
	(71,600 to 94,700)	(52,300 to 70,500)	(18,700 to 24,500)	
Open burning	66,200	50,500	15,700	
	(56,700 to 76,800)	(42,800 to 59,500)	(13,700 to 17,700)	
Transportation	23,100	17,400	5,600	
	(19,900 to 26,400)	(14,800 to 20,200)	(4,900 to 6,400)	
Brick production	24,100	18,100	5,900	
	(20,700 to 27,800)	(15,500 to 21,100)	(5,100 to 6,700)	
Distributed diesel	20,400	16,200	4,200	
	(17,600 to 23,800)	(13,700 to 19,100)	(3,600 to 4,800)	
Anthropogenic dust ^a	99,900	74,000	25,900	
	(86,500 to 114,400)	(63,100 to 85,500)	(22,700 to 29,300)	
Total dust ^b	412,500	303,700	108,900	
	(353,300 to 474,600)	(256,600 to 351,300)	(94,900 to 123,700)	

* Anthropogenic dust includes only anthropogenic fugitive, combustion, and industrial dust.

^b Total dust includes anthropogenic dust and windblown mineral dust.

Source Sector	All India (%)	Rural India (%)	Urban India (%)
Residential biomass	23.9	24.2	22.1
Total coal	15.7	15.5	17.1
Industrial coal	7.7	7.6	8.5
Power plant coal	7.6	7.5	8.0
Open burning	5.5	5.5	5.6
Transportation	2.1	2.1	2.1
Brick production	2.2	2.1	2.2
Distributed diesel	1.8	1.8	1.4
Anthropogenic dust ^b	8.9	8.8	9.6
Total dust ^c	38.8	38.7	39.5

Table 2. Mean Percentage Contribution of Different Source Sectors to Population-Weighted Ambient PM2.5 in India for 2015^a

* Appendix C Table C.1 (available on the HEI website) provides the breakdown of these sector contributions to PM2.5 for each of the Indian states.

^b Anthropogenic dust includes anthropogenic fugitive, combustion, and industrial dust.

^c Total anthropogenic dust and windblown mineral dust.

	CHINA OUTDOOR PM	CHINA HOUSEHOLD	INDIA OUTDOOR PM	INDIA HOUSEHOLD	USA OUTDOOR PM
IHD	291,796	149,659	365,642	283,158	43,160
	20%	10%	23%	18%	9.3%
Stroke	322,230	165,101	152,488	133,088	10,881
	17%	9%	<mark>19%</mark>	17%	6.2%
COPD	281,744 31%	163,542 18%	348,988 33%	341,550 33%	1,710 9.0% Ozone: 11,662
Lung	145,983	73,482	22,530	22,106	17,363
Cancer	25%	13%	27%	27%	4.5%
ALRI	66,302	38,258	200,742	197,192	5,718
	32%	19%	38%	37%	6.9%
	1,108,055	590,042	1,090,391	977,094	88,434

http://vizhub.healthdata.org/gbd-compare

REF, or Reference Scenario

Where the sectoral energy demand is met through sectoral technology-mix evolution at rates corresponding to changes observed during 2005–2015.

S2, or Ambitious Scenario

Assumes that the technology mix will reflect (1) the energy-efficiency targets for thermal power and industry as desired in India's INDC; (2) the emissions standards in transport as proposed in auto-fuel policy; and (3) the emissions controls expected from an influx of cleaner technologies in residential, brick production, and informal industry sectors.

S3, or Aspirational Scenario

Aimed at more profound energy efficiency targets, represented by published high-efficiency—low-carbongrowth pathways in industrial, electricity-generation, and transport sectors; high rates of shifting away from traditional biomass technologies (residential and informal industry); and including a complete end to agricultural field burning.

