The CITI-SENSE Study 2012-2016
Lessons Learned from a "Citizen Science" study

Alena Bartonova, PhD on behalf of the CITI-SENSE consortium
CITI-SENSE coordinator
alena.bartonova@nilu.no
NILU - Norwegian Institute for Air Research

Health Effects Institute Annual Meeting
1. May 2017
The people behind CITI-SENSE
CITI-SENSE
in 9 European
cities
9 tenants’ associations
3 universities
7 secondary schools
17 elementary schools
54 kindergartens

EUROPE
9 cities
9,4 million observations
(9/2015-9/2016)

>1,200 CityAir-app-users
2036 reported perceptions, app still running!

324 air sensor units in network at one time
Additional sensor clusters

>50 public places
volunteers

327 portable sensor pack
LEO-volunteers

1530 answers (questionnaire on air quality knowledge and views)
>300 evaluations of products
CITI-SENSE

Development of sensor-based Citizens’ Observatory (CitOb) Community for improving quality of life in cities

Enabling technologies

CitOb: Mediator

Science/research

Decision-makers

Citizens
Technologies for air quality
Technologies for air quality

Why we assess air

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Responsibility</th>
<th>Quality requirements</th>
<th>Data public?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compliance with Directive 2008/50/EC</td>
<td>Authorities</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>SEA/impact assessment</td>
<td>Project owner</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>Polluting activities - compliance</td>
<td>Project owner</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>Public information</td>
<td>Authorities, others</td>
<td>yes, no</td>
<td>yes, no</td>
</tr>
<tr>
<td>Indoor environment</td>
<td>Owner/Occupant</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Information for private actors</td>
<td>Private actors</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Research</td>
<td>Researchers</td>
<td>yes</td>
<td>yes</td>
</tr>
</tbody>
</table>
Calibration/QA/QC

<table>
<thead>
<tr>
<th>Who</th>
<th>What</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensor provider</td>
<td>• Quality control of sensor before shipping; Algorithms to convert signal to concentration</td>
</tr>
<tr>
<td>Sensor device manufacturer</td>
<td>• Algorithms to convert signal to concentration;</td>
</tr>
<tr>
<td></td>
<td>• Some providers: Quality control before shipping – calibration curve</td>
</tr>
<tr>
<td>Sensor device lay user</td>
<td>• Access to manufacturer-calibrated concentrations;</td>
</tr>
<tr>
<td></td>
<td>• Access to individual instrument data</td>
</tr>
<tr>
<td>Sensor device professional user</td>
<td>• Some providers: access to signal (raw data);</td>
</tr>
<tr>
<td></td>
<td>• Laboratory testing to support QA/QC;</td>
</tr>
<tr>
<td></td>
<td>• Co-location with regulatory monitoring – additional calibration curve</td>
</tr>
<tr>
<td></td>
<td>• Co-location at deployment site – additional calibration curve</td>
</tr>
</tbody>
</table>
CITI-SENSE Full Deployment AQ

<table>
<thead>
<tr>
<th>Location/Provider</th>
<th>EI AQMESH outdoors</th>
<th>ATEKNEA portable</th>
<th>AS indoor</th>
<th>OBEO (Radon)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barcelona</td>
<td>25 + 5*</td>
<td>11</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Belgrade</td>
<td>25</td>
<td>11</td>
<td>12</td>
<td>4</td>
</tr>
<tr>
<td>Edinburg</td>
<td>24</td>
<td>11</td>
<td>12</td>
<td>4</td>
</tr>
<tr>
<td>Haifa</td>
<td>24</td>
<td>11</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ljubljana</td>
<td>12 + 6*</td>
<td>11</td>
<td>12</td>
<td>4</td>
</tr>
<tr>
<td>Oslo</td>
<td>24</td>
<td>11</td>
<td>12</td>
<td>4</td>
</tr>
<tr>
<td>Vienna</td>
<td>24</td>
<td>11</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ostrava</td>
<td>16</td>
<td>9</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td>174</td>
<td>86</td>
<td>48</td>
<td>16</td>
</tr>
</tbody>
</table>

* From pilot, not accounted for in the total
Typical deployment, air quality
Data quality: calibration in the laboratory and in the field
Field evaluation results: calibration

<table>
<thead>
<tr>
<th>AQMesh unit</th>
<th>Parameter</th>
<th>Correl. (lab)</th>
<th>Correl. (field)</th>
<th>Slope (lab)</th>
<th>Slope (field)</th>
<th>Interc. (lab) [ppb]</th>
<th>Interc. (field) [ppb]</th>
</tr>
</thead>
<tbody>
<tr>
<td>688150</td>
<td>CO</td>
<td>0.99</td>
<td>0.58</td>
<td>0.86</td>
<td>0.88</td>
<td>0.07</td>
<td>166</td>
</tr>
<tr>
<td></td>
<td>NO</td>
<td>0.99</td>
<td>0.96</td>
<td>0.97</td>
<td>0.93</td>
<td>-1.13</td>
<td>-0.12</td>
</tr>
<tr>
<td></td>
<td>NO₂</td>
<td>0.99</td>
<td>0.65</td>
<td>1.22</td>
<td>0.38</td>
<td>-1.02</td>
<td>3.8</td>
</tr>
<tr>
<td></td>
<td>O₃</td>
<td>0.99</td>
<td>0.81</td>
<td>1.16</td>
<td>0.26</td>
<td>-1.27</td>
<td>7.2</td>
</tr>
<tr>
<td>864150</td>
<td>NO₂</td>
<td>0.96</td>
<td>0.30</td>
<td>1.21</td>
<td>0.2</td>
<td>3.85</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>O₃</td>
<td>0.99</td>
<td>0.32</td>
<td>0.99</td>
<td>0.11</td>
<td>3.25</td>
<td>9</td>
</tr>
</tbody>
</table>

- Good performance in the laboratory is not indicative of good performance in the field.
- Correlations significantly lower in the field than in the laboratory.
- Necessary to calibrate the sensors in the field.
Field evaluation: dependence on meteorological conditions

- The response of each sensor to weather is unique -> individual evaluation.
- Possible false increases in concentrations due to changes in temperature.
Field evaluation: dependence on the location

- Linear calibration parameters differ depending on location (traffic-saturated environment or traffic-calm environment).
- Perform in-situ calibration at the deployment site?

<table>
<thead>
<tr>
<th>Node 688150</th>
<th>CO</th>
<th>NO</th>
<th>NO₂</th>
<th>O₃</th>
<th>PM₁₀</th>
<th>PM₂.₅</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coef. determination (r²) Lab</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Coef. determination (r²) Field (dense traffic)</td>
<td>0.34</td>
<td>0.92</td>
<td>0.42</td>
<td>0.65</td>
<td>0.53</td>
<td>0.40</td>
</tr>
<tr>
<td>Coef. determination (r²) Field (calm traffic)</td>
<td>-</td>
<td>0.24</td>
<td>0.15</td>
<td>-</td>
<td>0.68</td>
<td>0.84</td>
</tr>
<tr>
<td>Slope Lab</td>
<td>0.86</td>
<td>0.97</td>
<td>1.22</td>
<td>1.16</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Slope Field (dense traffic)</td>
<td>0.88</td>
<td>0.93</td>
<td>0.38</td>
<td>0.26</td>
<td>1.30</td>
<td>0.51</td>
</tr>
<tr>
<td>Slope Field (calm traffic)</td>
<td>-</td>
<td>0.27</td>
<td>0.09</td>
<td>-</td>
<td>2.10</td>
<td>1.90</td>
</tr>
<tr>
<td>Intercept Lab</td>
<td>0.07</td>
<td>-1.13</td>
<td>-1.02</td>
<td>-1.27</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Intercept Field (dense traffic)</td>
<td>166</td>
<td>-0.12</td>
<td>3.80</td>
<td>7.20</td>
<td>5.60</td>
<td>3.30</td>
</tr>
<tr>
<td>Intercept Field (calm traffic)</td>
<td>-</td>
<td>4.20</td>
<td>6.90</td>
<td>-</td>
<td>-1.30</td>
<td>0.98</td>
</tr>
</tbody>
</table>
Detailed air quality maps: Oslo

AQMesh deployed in 51 kindergartens and 13 streets
AQMesh deployed in 51 kindergartens and 13 streets

NO\textsubscript{2} concentrations were used in a data assimilation procedure, combining a base map (annual average) obtained from dispersion models and the sensor output. This resulted in a hourly map of concentrations for the Oslo area (ca 23x18 km2)

Air quality on a map

The challenge is to provide in near-real time air quality info from different sources (sensors, monitors, models, perception) and to communicate how the differences in technologies and origin of data affect the results and the comparisons.
Information Technology backbone: Simplified platform architecture

CITI-SENSE SEDS: Spatial Environmental data server

Sensor -> Sensor provider platform -> Ingesting Service -> Citisense SEDS

https post XML OGC compliant standard

Publishing Service

https get XML OGC compliant standard

Data processing services
Data fusion services
Visualization widgets

End users
Lessons (citizen’s observatory)

CitOb can be seen as an infrastructure – support to data collection, data transmission to repository and data interpretation

Users: why should they support CitOb and participate; show added value; recruitment strategies;
 – authorities
 – public and their representatives (NGOs)

Technological aspects
 – solvable but need to manage expectations
 – need to assess and communicate the quality of collected information – (manage expectations)
Lessons (CitOb for governance)

Governance: of what?

Role of authorities: why should they need more information? And what are the technical requirements for such information?

Role of the public: why should they get involved, and how to make sure we do not provide «alternative facts»?
Lessons (participants)

What motivates the participants?
- Why are they interested and what do they need to know
- How do we engage others than those like us?
- Campaigns vs long-term engagement: reasons for participating may differ

Special user groups: obvious entry point
- Schools
- Patient organisations
- Civic groups such as activists, bicyclists, others
- Citizen science
Lessons (providing information)

How do we address people who want to know about air quality

– Combining sources of information:
 • Regulatory data and information
 • Other earth observations
 • Citizen science
 • Perception, attitudes

How do we combine results obtained by technologies used for different purposes (regulatory, remote sensing, modeling, citizen science)
Lessons (technologies)

Define **purpose first**: Technology is «fit for purpose» – what is the purpose? If not defined, expectations will not be met.

Uncertainty of the data must be understood; it affects e.g., what visualisation products can be made.

Must ensure **stable communication** between devices and data platform.

Implementing information flow requires **standardization** of codes (sensor > platform > product > user).

Support to sensor **deployment** and operation and communication infrastructure needs to be in place.
Lessons (benefits to users)

Simple access to (simple) information about air pollution, here and now, will raise awareness and increase interest and participation in air pollution governance.

Use of microsensors can contribute to reducing individual’s exposure - I can «see» where pollution is high (and thus perhaps avoid being there?)

Supports dialogue, e.g., between the city and the inhabitants.
Contributing to GEOSS*

alias - How do I use other people’s data?

Metadata – sufficient to describe your data?

Data pedigree: how were the data generated, what are their parameters - precision, accuracy, technologies used

How do «episodic» data contribute to monitoring? To environmental information?

Research team: needs time to make sense of data

GEOSS – Global Earth Observations System of Systems
Acknowledgements

The CITI-SENSE project, «Development of citizen’s observatories for improvement of quality of life in cities», has received funding from the 7th Framework Programme for Research and Innovation of the European Union, under grant agreement nº:308524

Additional funding was provided by individual partners

Some activities of NILU were funded by the Research Council of Norway

Slides contributed by Nuria Castell, Philipp Schneider, Mirjam Fredriksen, Leonardo Santiago and other consortium members.
Where to find us

General contact: alena.bartonova@nilu.no

Web page http://co.citi-sense.eu
 – Codes, widgets
 – Questionnaires
 – Sensor devices
 – Publications
 – Brochures

CityAir App: iTunes, AppStore