Filling the Gaps in Urban Air Pollution Monitoring
with Google Street View Cars
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Issue: ambient # exposure

“Ambient”: what we measure “Exposure” what we breathe
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Ambient monitors
are intentionally located
far from emissions sources

- J Graphic: Bennett et al., Environ. Sci. Technol., 2002




Ambient monitoring today

US EPA monitors for 25 largest U.S. urban areas
111 M people ~ 50% of urban population

Number of sites 132 185 282
... per million people 1.2 1.7 2.5
... per 1000 urban km? 1.6 2.2 3.4

Urban ambient monitors provide:
little spatial information
high precision/accuracy

excellent temporal coverage
\_ J

Year-2015 US EPA network



Don’t need much data to estimate annual average

Ambient Black Carbon
Oakland, CA, 2014

Black Carbon (ug m3)
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Inspired by: Tan et al., Atmos Environ 99, 333-340, 2014 5



Don’t need much data to estimate annual average

Ambient Black Carbon
Oakland, CA, 2014
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Compare sample mean with annual mean

Randomly sample X hours of data
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Distribution of bias in estimated mean

30%

20%

10%

-10%

-20%

-30%

_|

|_

40 hours
+ 19%

100 hours 240 hours 800 hours
+ 12% + 8% + 4%

Inspired by: Tan et al., Atmos Environ 99, 333-340, 2014
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Can we trade
temporal coverage
for
spatial coverage?



5+ decades
of progress:

Advances in
measurement
technology

Increasing mobility
of platforms

Shift in emphasis
from atmosphere
to exposure

Routine monitoring |}
Is still very
challenging!
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Photos: D. Ensor, 2011, CARB, LBNL




Towards routine mobile measurements

Location + Meteorology

Latitude & Longitude
Vehicle Speed and
Heading

Wind Direction

Wind Speed

External Temperature
External Pressure

Lab-Grade Instrumentation

Black Carbon: photoacoustic extinction
Nitric Oxide: chemiluminescence

Nitrogen Dioxide: cavity-attenuation
phase shift spectroscopy

Sample rate: 1 Hz

Raw Data Data Cleaning Data Correction Qualified Data




Approach: repeat driving overkill
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Median 30 m road segment: ~31 sampling days
daytime only, seasonally balanced




Data reduction approach

Repeat monitoring — persistent, stable spatial patterns J

- Group measurements by 30 meter road segment
- Average: ~31 days per road segment

- ~100-200 1 Hz data points per road segments

- Compute median concentration for each road segment

- High precision: +10-20% of median based on bootstrap resampling
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Mapping pollution at 30 m scale
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Neighborhood hotspots
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- Similar spatial patterns
among 1° pollutants

- Ambient concentration
~ levels on quiet streets
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- Looks a bit like a LUR— but
It’s measured, not predicted

Vil

- Ubiquitous, stable hotspots

- ~10°x more spatial data!
1 observation : 10 people
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Spatiotemporal data mining

[ Spatial, temporal patterns have structure related to sources J

Decay near highways “Fresh” vs. “aged” mixtures
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This method would work with fewer data

a. Precision b. Bias
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Number of drive days

Number of drive days

10-20 randomly chosen days per road are sufficient to re-create
full dataset with high precision, low bias.




Scaling up? Mapping AQ for 111M people

1. Drive 8 hd1x200d y1=1600 h y-

2. Average speed is 25 km h-1

4. Top 25 US 3. One car can drive

urban areas have 40 x 103 km y-
800 x 103 km of roads

5. Need to drive eac
road 20 times y-1

6. Drive 16 x 106 km y-1

7. Need 400 cars to annually map
top 25 US cities

8. Equipment cost is <<$100k/vehicle at scale

( Equipment to map air quality for 50% of urban US population costs << $40 M ) 16




Application to developing countries (?)

N\ . .
Could this technique work for mapping New Delhi, India

\
pollution in developing world? ¥

V4 Lodhi
/ Garden
1 Hz particle instruments e ’!
Auto-rickshaw based mobile lab, New Delhi, 2010 3
Repeated mobile monitoring on one route: 60x over 4 months T
20 30 40 50
Pollution levels ~ 10-20x higher, abundant high-emitters

Black Carbon (ug m3)

Precision @ 10m: +4-11%
Apte et al., Atmos. Environ. 45, 4470-4480, 2011 17



Open questions and future research

- Nights, weekends: Can we map stable patterns outside of daytime?

- Applicability of low-cost sensors: would this approach work with
less precise/accurate instruments?

- Comparability / complementarity with other approaches:
- How do these exposure data differ from LUR, remote sensing, etc?

- How does the effort-per-data scale?

- Would these data provide value for an epidemiological study?
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Questions?

Lab-Grade
Instruments

Mobile
Air Quality
Monitor Fleet

Repeated daily
sampling
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Stable 30m air quality maps
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