Filling the Gaps in Urban Air Pollution Monitoring with Google Street View Cars

Presenter: Joshua Apte JSApte@utexas.edu HEI | 01 May 2017 University of Texas at Austin Department of Civil, Architectural and Environmental Engineering

Research Partners

West Oakland

Environmental

Indicators Project

know which way the wind blows

BAY AREA

AIR QUALITY

MANAGEMENT

DISTRICT

Utrecht University

Co-authors:

Kyle Messier, Shahzad Gani, Melissa Lunden, Roel Vermeulen, Julian Marshall, Tom Kirchstetter, Michael Brauer, Chris Portier, Steven Hamburg

Issue: ambient ≠ exposure

"Ambient": what we measure

Ambient monitors are intentionally located far from emissions sources

"Exposure": what we breathe

Graphic: Bennett et al., Environ. Sci. Technol., 2002

Ambient monitoring today

US EPA monitors for 25 largest U.S. urban areas 111 M people ~ 50% of urban population

	NO ₂	O 3	PM _{2.5}
Number of sites	132	185	282
per million people	1.2	1.7	2.5
per 1000 urban km ²	1.6	2.2	3.4

Urban ambient monitors provide: little spatial information high precision/accuracy excellent temporal coverage

Don't need much data to estimate annual average

Don't need much data to estimate annual average

Randomly sample X hours of data Compare sample mean with annual mean

Can we trade temporal coverage for spatial coverage?

Rich history of mobile monitoring

5+ decades of progress:

Advances in measurement technology

Increasing mobility of platforms

Shift in emphasis from atmosphere to exposure

Routine monitoring is still very challenging!

Towards routine mobile measurements

Location + Meteorology

Latitude & Longitude Vehicle Speed and Heading Wind Direction Wind Speed External Temperature External Pressure

Lab-Grade Instrumentation

Black Carbon: photoacoustic extinction Nitric Oxide: chemiluminescence Nitrogen Dioxide: cavity-attenuation phase shift spectroscopy

Sample rate: 1 Hz

Approach: repeat driving overkill

Median 30 m road segment: ~31 sampling days daytime only, seasonally balanced

Data reduction approach

Repeat monitoring → persistent, stable spatial patterns

- · Group measurements by 30 meter road segment
 - · Average: ~31 days per road segment
 - · ~100-200 1 Hz data points per road segments
- · Compute median concentration for each road segment
- · High precision: ±10-20% of median based on bootstrap resampling

Mapping pollution at 30 m scale

Median weekday, daytime concentration from repeated drives

Neighborhood hotspots

Some key lessons

- Similar spatial patterns among 1° pollutants
- Ambient concentration ~ levels on quiet streets
- Looks a bit like a LUR— but it's measured, not predicted
- Ubiquitous, stable hotspots
- ~10⁵× more spatial data!
 1 observation : 10 people

Spatiotemporal data mining

Spatial, temporal patterns have structure related to sources

This method would work with fewer data

10-20 randomly chosen days per road are sufficient to re-create full dataset with high precision, low bias.

Scaling up? Mapping AQ for 111M people

Equipment to map air quality for 50% of urban US population costs << \$40 M

Application to developing countries (?)

Open questions and future research

Nights, weekends: Can we map stable patterns outside of daytime?

 Applicability of low-cost sensors: would this approach work with less precise/accurate instruments?

Comparability / complementarity with other approaches:

- · How do these exposure data differ from LUR, remote sensing, etc?
- How does the effort-per-data scale?

· Would these data provide value for an **epidemiological study**?

Acknowledgements

Co-authors:

Kyle Messier, UTexas/EDF Shahzad Gani, UTexas Melissa Lunden, Aclima, Inc. Roel Vermeulen, Utrecht University Julian Marshall, University of Washington Tom Kirchstetter, LBNL Michael Brauer, UBC Chris Portier, EDF Steve Hamburg, EDF

Aclima, Inc.

Davida Herzl Okorie Puryear Alexandra Teste Jessica Lass Kim Hunter Mobile Platform Team

Google Earth Outreach

Karin Tuxen-Bettman Luc Vincent Rebecca Moore Arjun Raman Carol Owens Street View Operations Team Imagery and background maps by Google **Environmental Defense Fund**

Ramon Alvarez Millie Chu Baird Cassandra Ely

Bay Area AQ Management District

Phil Martien David Holstius

West Oakland Environmental Indicators Project

Margaret Gordon Brian Beveridge

Funding was provided by Signe Ostby and Mark Cook and by a Google Earth Engine Research Award.

Questions?

