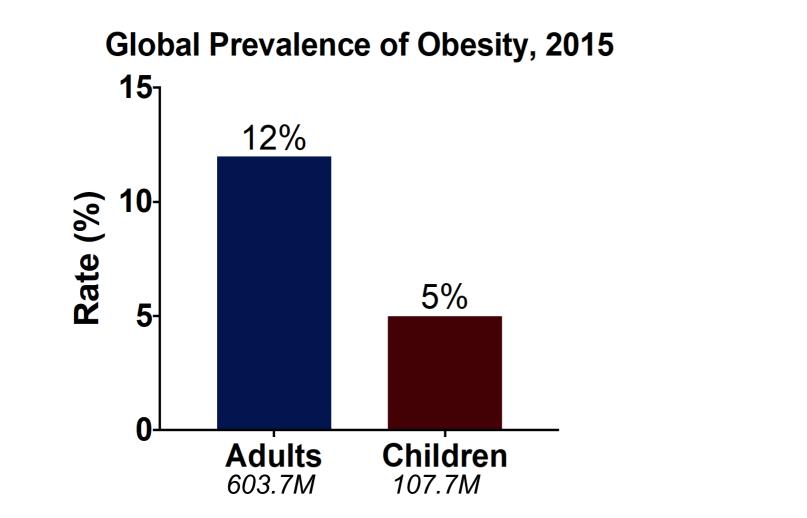
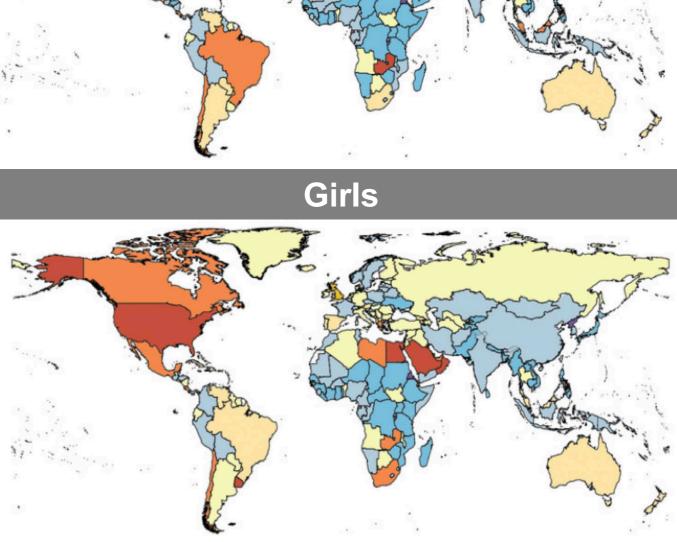
Obesity and Type 2 Diabetes in Children

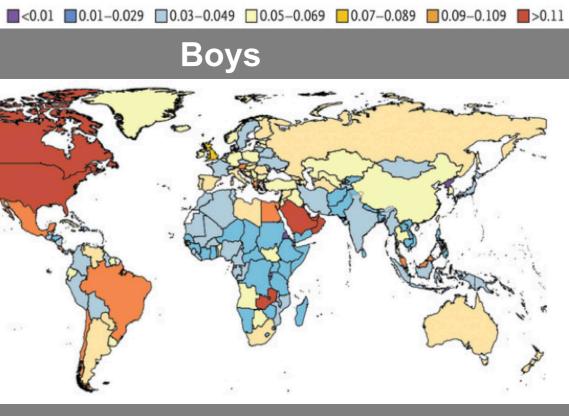
Health Effects of Early-Life Exposure to Air Pollution **HEI Annual Conference** May 6, 2019


Tanya L. Alderete, Ph.D.

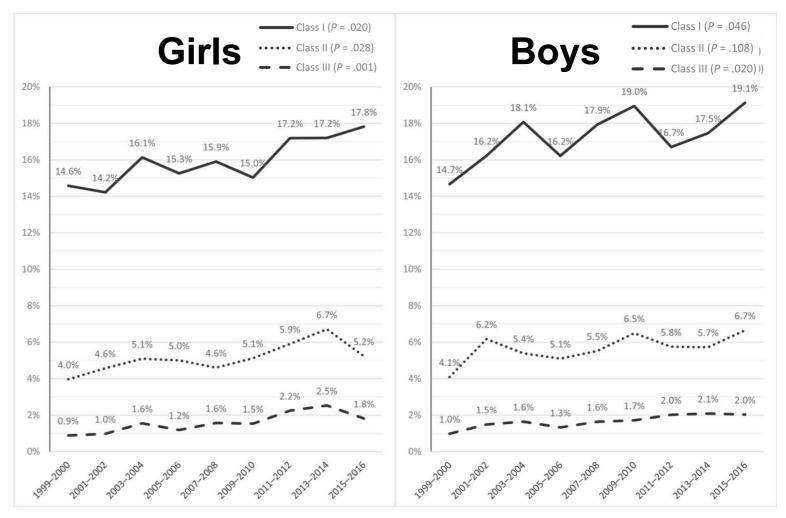
Assistant Professor Department of Integrative Physiology University of Colorado at Boulder



Global Rates of Obesity


Prevalence of Obesity

High body mass index (BMI) contributed to 4M deaths and 120M disability-adjusted life-years.


GBD 2015 Obesity Collaborators, NEJM, 2017;377:13-27

Obesity and Severe Obesity Continue to Increase in the United States

No Evidence of Decline in **Obesity Prevalence in any Age Group**

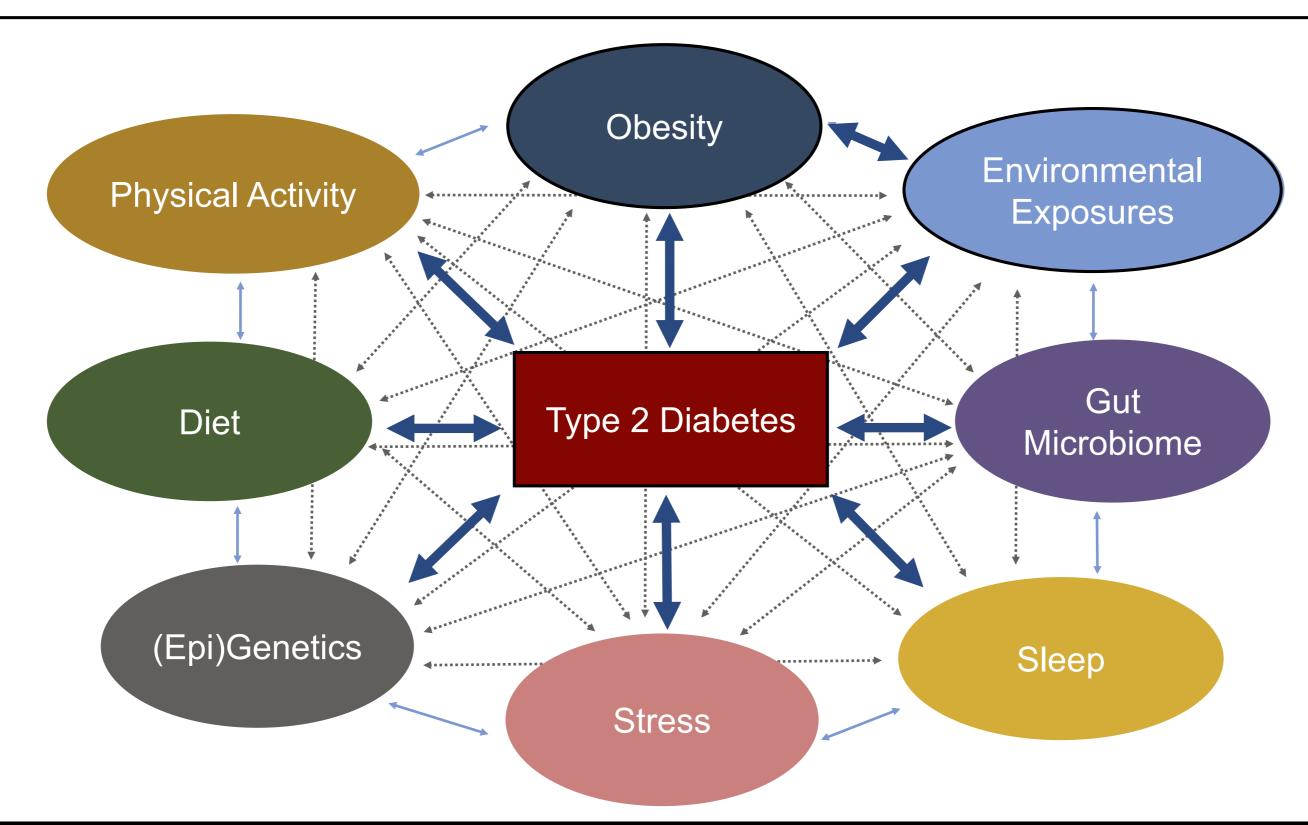
- 1 in 5 US children obese
- Highest prevalence in Hispanics & African Americans

Prevalence of Obesity and Severe Obesity Among US Children (2-19 years; 1999-2016)

Class I BMI ≥95th percentile; Class II BMI >120% of 95th percentile; Class III BMI ≥140% of 95th percentile

Skinner et al., Pediatrics, 2018 and NEJM, 2015

Type 2 Diabetes in Youth in the United States


- Increasingly, type 2 diabetes is diagnosed in youth
 - 20% to 50% of new-onset diabetes cases¹
 - Disproportionately affects specific racial/ethnic groups²⁻⁴
- By 2050, number of youths with type 2 diabetes is projected to increase 4-fold⁵
- Earlier age of diabetes onset, increases the future burden of disease

¹Bobo et al., 2004; ²Dabelea et al., 1998; ³Dean et al., 1998; ⁴Neufeld et al., 1998; ⁵Dabelea et al., 2014 (SEARCH Study)

Complex Relationships: Risk Factors, Obesity, and Type 2 Diabetes

These risk factors can relate to each other in various combinations

Exposure to Air Pollutants at Home

- ~30 45% of urban population in North America lives near busy roads
- 2010 HEI Report: traffic pollution causes asthma attacks and may cause onset of childhood asthma, impaired lung function, premature death, and cardiovascular disease¹ Those within 300 to 500 meters of highways most affected¹ •
- 2019 HEI and State of Global Air: air pollution may contribute to low birth weight and preterm birth²
 - Included health burden related to type 2 diabetes² •

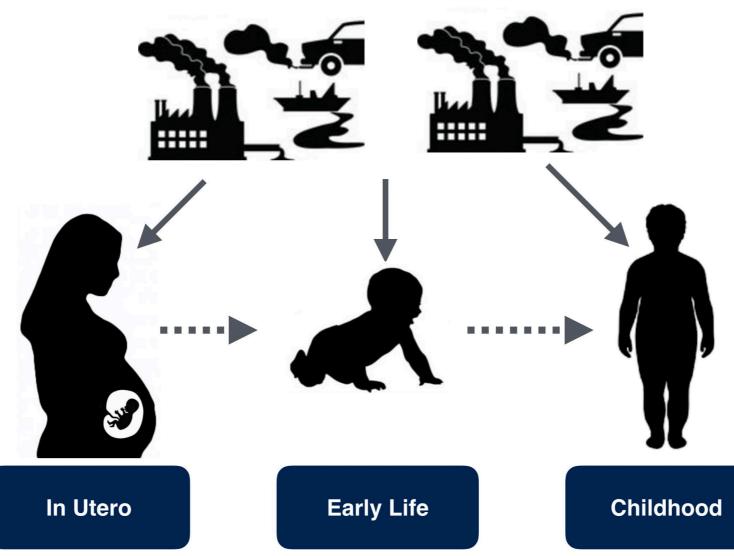
¹HEI Panel on the Health Effects of Traffic-Related Air Pollution, *Traffic-Related Air Pollution*: A Critical Review of the Literature on Emissions, Exposure, and Health Effects. 2010. ²HEI. 2019. State of Global Air 2019, www.stateofglobalair.org. Images: Los Angeles Times

Schools Located Near Busy Roadways in the United States

Nearly 8,000 public schools lie within 500 ft of highways / large roadways

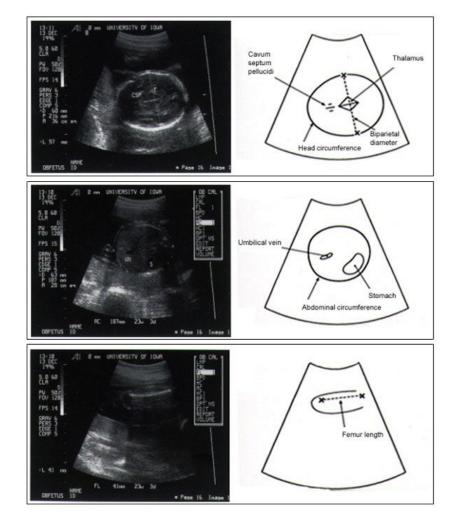
w/in 500 ft. of road w/30,000+ vehicles on an average day

w/in 500 ft. of road w/10,000+ vehicles & 500+ trucks on an average day


https://publicintegrity.org/environment/the-invisible-hazard-afflicting-thousands-of-schools/

Exposure to Air Pollutants Occur During Critical Periods of Development

Maternal and Early Life Exposures to Air Pollutants: **Implications for Childhood Obesity and Type 2 Diabetes**



Developmental Origins of Health and Disease: Early life environment has widespread consequences for later health

Prenatal Air Pollution Exposure and Decreased Fetal Growth

Intrauterine growth restriction by ultrasound: catch-up growth and *↑*adiposity in early/mid-childhood¹

- ↑NO₂ (0-12 wk): ↓fetal growth, birth size²
- **PM_{2.5} (prenatal):** ↓ birth weight, preterm birth, SGA³
- **Traffic Density (3rd trimester):** ↓
 fetal growth,
 ↑
 postnatal
 weight gain<sup>4
 </sup>
- ↑PAH (1st/3rd trimester, prenatal): ↓fetal growth⁵, ↓birth weight, SGA⁶

Notably, these studies included personal exposure monitoring.

NO₂ = nitrogen dioxide PM_{2.5} = particulate matter < 2.5 μm in diameter PAH = polycyclic aromatic hydrocarbons SGA = small for gestational age

¹Ong KK et al., 2000; ²Iñiguez C et al., 2018; ³Yuan et al, 2019; ⁴Fleisch AF et al., 2015; ⁵Choi et al., 2011; ⁶Choi et al., 2012; **Image**: Peleg D et al., 1990

Prenatal Air Pollution Exposure and Childhood Obesity

Author	Ν	Location	Exposure	Prenatal	Direction of Outcome in Early Life & Childhood ¹
Rundal (2011)	422	United States	PAH	3 rd Trimester	+ BMI-z, Obesity, Fat Mass
Chiu (2017)	239	United States	PM _{2.5}	2-22 wks 8-17 wks Pregnancy	+ Waist-to-Hip Ratio + BMI-z, Fat Mass (males) + BMI-z, Fat Mass (males) + Waist-to-Hip Ratio (females)
Fleisch (2017)	1418	United States	<50 m vs. ≥200m	Delivery	+ Fat Mass

Results largely mixed and may differ by sex and pollutants examined...

 $\begin{array}{ll} \mathsf{BMI} = & \mathsf{Body} \mbox{ mass index} \\ \mathsf{PM}_{2.5} = & \mathsf{particulate} \mbox{ matter} < 2.5 \ \mu m \ in \ diameter \\ \mathsf{PAH} = & \mathsf{Polycyclic} \ aromatic \ hydrocarbons \end{array}$

¹6 months, 3-15 years; *Longitudinal study; PAH (polycyclic aromatic hydrocarbon); near-roadway (modeled with NOx)

Early Life Exposure to Air Pollution and Childhood Obesity

Author	Ν	Location	Age (yr.)	Pollutant	Direction of Outcome in Childhood
Jerrett (2010)*	3318	United States	9-10	Traffic by home	+ BMI (150m) + BMI (300m, <i>females</i>)
Dong (2014)	30056	China	2-14	PM ₁₀ , O ₃ , NO ₂ , SO ₂	+ Obesity + Overweight (O ₃ only)
Nikolic (2014)	1059	Serbia	7-11	High vs. Low Exposed (SO ₂ , NO ₂ , Black Smoke)	+ Weight, BMI
Jerrett (2014)*	4550	United States	5-7	Near-Roadway	+ BMI
McConnell (2015)*	3318	United States	10	(Near-Roadway modeled NO _x) * SHS	+ BMI
Alderete (2017)*	314	United States	8-15	PM _{2.5} , NO ₂	+ BMI & SAAT Growth
Kim (2018)*	2318	United States	1-4	Near-Roadway	+ BMI Growth
de Bont (2019)	2660	Spain	7-10	PM ₁₀ -home, UFP-school, NO ₂ , EC	+ Obesity + Overweight
Huang (2019)	8327	Hong Kong	9-15	NO ₂	+ BMI (males)

 PM_{10} = particulate matter < 10 µm in diameter; O_3 = ozone;

 NO_2 = nitrogen dioxide; NO_x = nitrogen oxides; SO_2 = sulfur dioxide;

UFP = ultrafine particles; EC = elemental carbon;

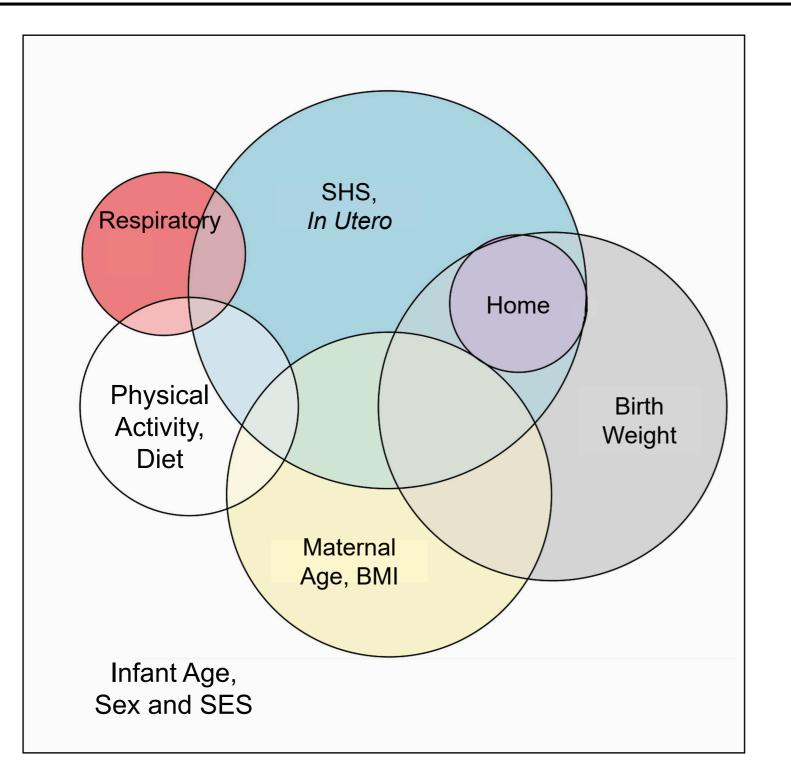
SHS = second hand smoke; SAAT = subcutaneous abdominal adipose tissue

9 Recent Studies: *Longitudinal study

Early Life Exposure to Air Pollution and Childhood Obesity

2 found no association and 2 had protective association when examining obesity

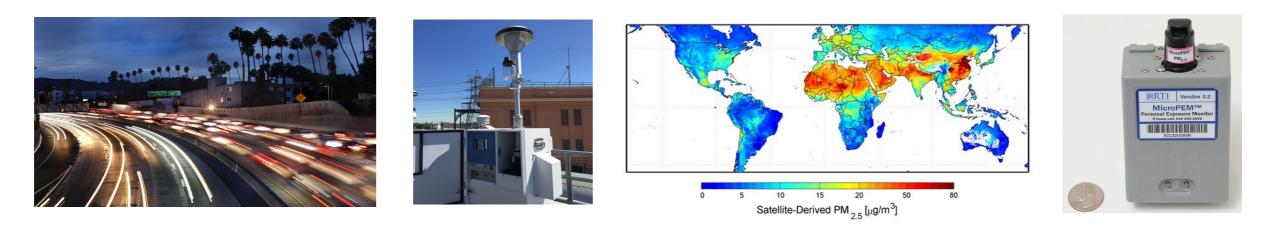
Author	Ν	Location	Age (yr.)	Pollutant	Direction of Outcome
Toledo-Corral & Alderete (2018)	429	United States	8-18	$PM_{2.5}$, NO_2 , O_3 , Near-Roadway	0 BMI-z, BF%, SAAT & IAAT
Fioravanti (2018)*	719	Italy	4, 8	NO _x , PM ₁₀ , PM _{2.5} , NO ₂	0 BMI-z, Waist Circumference & WHR
Kim (2016)*	1129	South Korea	0-5	PM ₁₀	- Weight
Huang (2019)	8327	Hong Kong	9-15	SO ₂	- BMI (males)


Mixed results may be due to differences in sex, age group, and pollutant...

BMI = Body mass index; $PM_{2.5}$ = particulate matter < 2.5 µm in aerodynamic diameter; PM_{10} = particulate matter < 10 µm in aerodynamic diameter; SO_2 = sulfur dioxide; EC = elemental carbon; NO_2 = nitrogen dioxide; NO_x = oxides of nitrogen

*Longitudinal Study; Near-Roadway (modeled with NO_x); SAAT (subcutaneous abdominal adipose tissue); IAAT (intraabdominal adipose tissue); WHR (waist-to-hip ratio)

<u>Covariates</u>: Early Life Exposure to Air Pollution and Childhood Obesity


- Infant Age, Sex, Socioeconomic status: 100%
- Secondhand smoke/In Utero: 72%
- Birth Weight: 56%
- Maternal Factors: 44%
- Physical Activity/Diet: 28%
- Respiratory Health: 17%
- Home Characteristics: 11%

17 Recent Studies: Jerrett (2010); Dong (2014); Jerrett (2014); McConnell (2015); Alderete (2017); Kim (2018); Nikolic (2013); Kim (2016); Toledo-Corral & Alderete (2018); Fioravantia (2018); Rundal (2011); Chiu (2017); Fleisch (2017); Frondelius (2018); Fleisch (2019); de Bont (2019); Huang (2019)

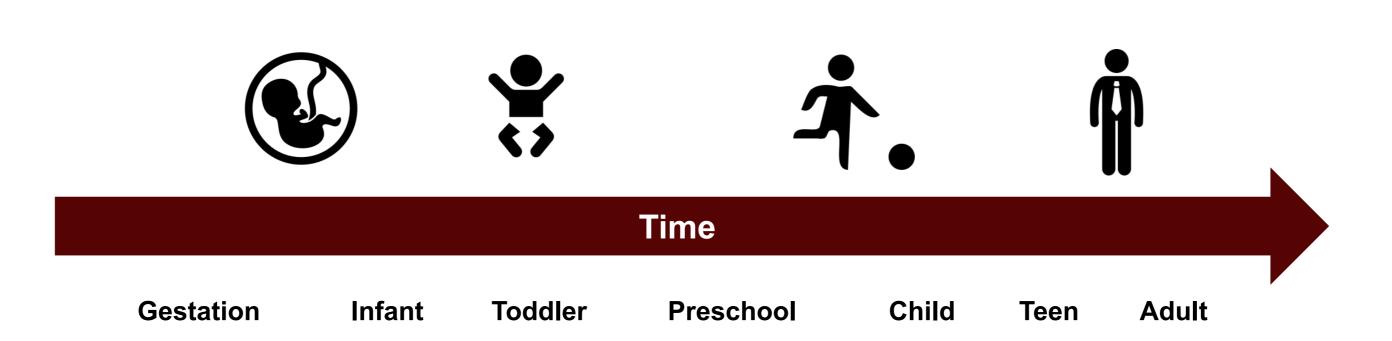
SHS = secondhand smoke; BMI = body mass index

Exposure Assessment and Multi-Pollutant Models

Exposure Assessment Methods:

- Traffic Density / Distance to Roadways
- Modeled NO_x (e.g., CALINE, Dispersion)
- Ambient Monitoring Stations (e.g., LUR, IDW)
- Satellite, Hybrid Satellite with LUR
- Personal Monitors (rare)
- School & Home Monitors (rare)

Very few studies examined multi-pollutant models (complex mixtures)



17 Recent Studies: Jerrett (2010); Dong (2014); Jerrett (2014); McConnell (2015); Alderete (2017); Kim (2018); Nikolic (2013); Kim (2016); Toledo-Corral & Alderete (2018); Fioravantia (2018); Rundal (2011); Chiu (2017); Fleisch (2017); Frondelius (2018); Fleisch (2019); de Bont (2019); Huang (2019)

ays rsion) .UR, IDW)

NO_x = nitrogen oxides CALINE = California Line Source Dispersion Model LUR = land use regression IDW = inverse distance weighted

Life Course Perspective of Obesity

- Prenatal and early-life factors are involved in development of obesity
- Causes of obesity are multifactorial
- Overweight / Obesity appear at different ages by race/ethnicity
- BMI has limitations as a measure of obesity (not capturing body composition)

Maternal Susceptibility to Air Pollution: Low Birth Weight and Childhood Obesity

7 studies examined effect modification of the association between ambient air pollution and low birth weight with maternal factors:

"The current epidemiologic evidence is scarce, but suggests that pregnant women who are smoking, being underweight, overweight/obese or having lower SES are a vulnerable subpopulation when exposed to ambient air pollution." (Westergaard et al., 2017)

•↓BW: ↑NHB & ↑Hispanic vs. NHW

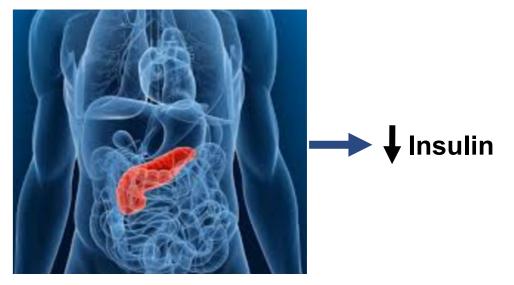
Westergaard et al., 2017; Mao et al., 2017; BW (birth weight); NHB (non-Hispanic Black); NHW (non-Hispanic White); SES (socioeconomic status)

Summary: Exposure to Air Pollutants and Childhood Obesity

- Influence of air pollution on body weight/obesity is mixed and may differ by sex, age group, race/ethnicity, and air pollutant
- Future studies should examine:
 - Multi-pollutant models
 - Personal monitoring
 - Important confounders and effect modifiers
 - Vulnerable populations
 - Mechanisms underlying associations

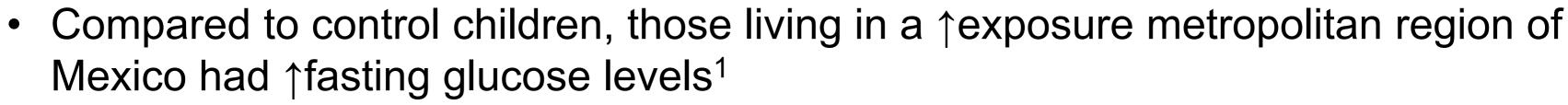
Childhood Exposure to Air Pollutants and Risk Factors for Type 2 Diabetes

Type 2 Diabetes Characterized:


- High peripheral glucose concentrations caused by insulin resistance
- •Relative **deficiency** of **insulin** from pancreatic β-cells

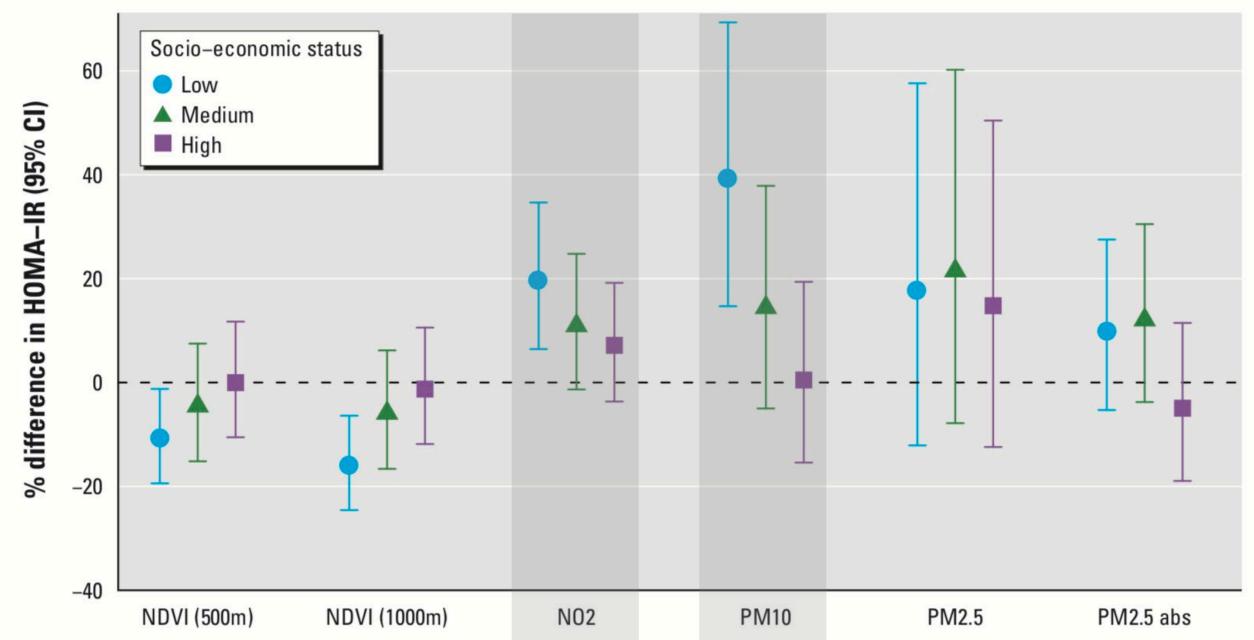
Risk for Developing Type 2 Diabetes (Early Indicators):

- •Blood markers of glucose metabolism
 - •Fasting glucose, post-prandial glucose, HbA1c
- •Insulin resistance / insulin sensitivity, acute insulin response, β -cell function


Blood Glucose

Pancreas (β-cells secrete insulin)

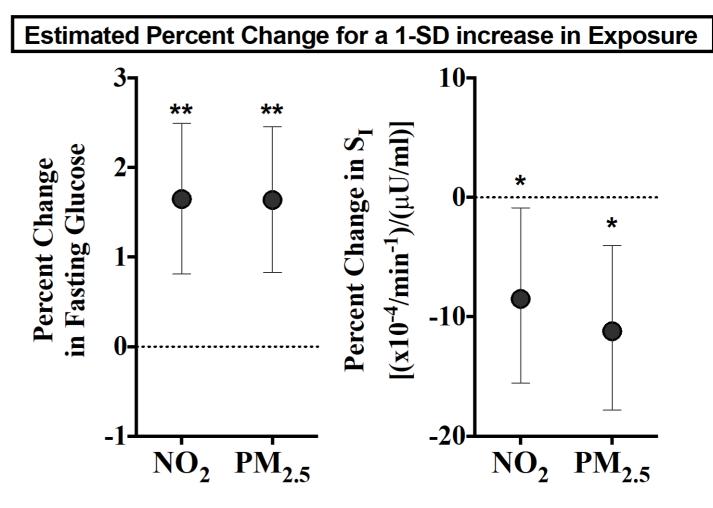
Air Pollution Exposure in Childhood and Risk Factors for Type 2 Diabetes


- \uparrow Air Quality Index (AQI) associated with ~2x higher odds of \uparrow fasting glucose in children and adolescents²
- \uparrow NO₂ associated with \downarrow metabolic benefits (e.g., HbA1c) of laparoscopic adjustable gastric banding in adolescents³
- ↑NO₂ and PM_{2.5} as well as proximity to roadways was associated with greater
 insulin resistance (HOMA-IR)⁴⁻⁶

¹Calderón-Garcidueñas et al. 2015; ²Poursafa et al., 2014; ³Ghosh et al. 2017; ⁴Kelishadi et al., 2009; ⁵Thiering et al., 2013 and ⁶2016 as reviewed in Alderete, Chen, & Toledo-Corral et al., 2018

Air Pollution Exposure has a Stronger Effect on Insulin Resistance in Adolescents with a Lower SES

Estimated effect for 2 standard deviation increase in exposure. For example, PM₁₀ (6.7 µg/m³) and NO₂ (8.9 µg/m³). Gam models adjusted for study area, cohort, sex, age, BMI, smoking by the adolescent, physical activity, pubertal state. p-Values for the interaction with time spent outside in summer: NDVI (500 m): p = 0.317, NDVI (1,000 m): p = 0.251, NO₂: p = 0.122, PM₁₀: p = 0.029, PM_{2.5}: p = 0.186, PM_{2.5} absorbance (abs): p = 0.126.


Thiering et al., Environ Health Perspect, 2016

Cross-Sectional Findings From Minority Youth Living in Los Angeles, CA

Higher prior year exposure to NO₂ and PM₂₅ associated with:

- 1. ↑ Higher fasting glucose
- 2. \downarrow Lower insulin sensitivity (S₁) among overweight and obese minority youth

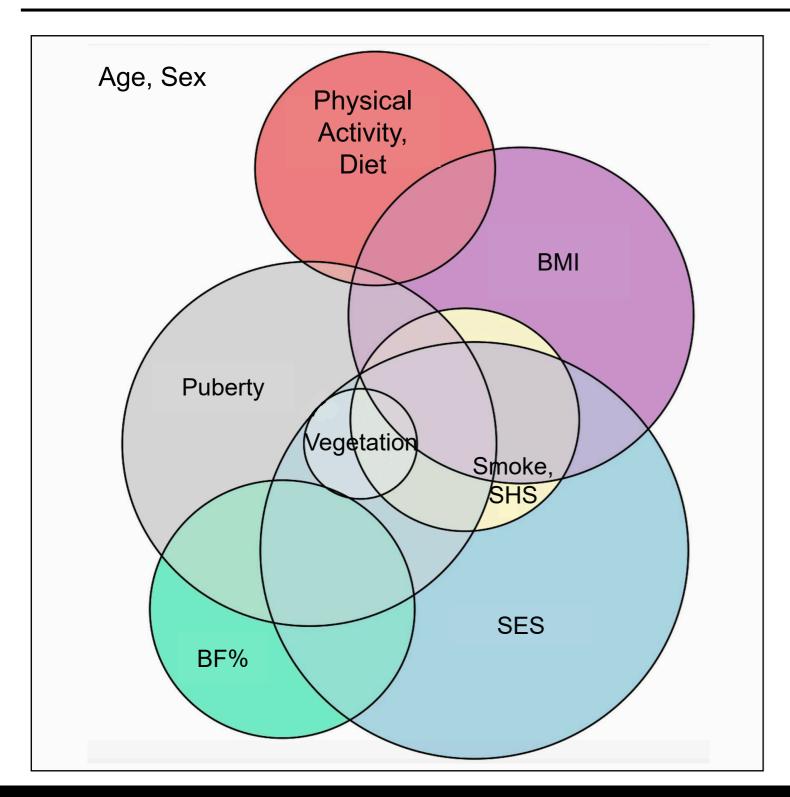
and 387, respectively.

Estimated effects for a 1 standard deviation (SD) difference in prior year NO₂ (6.8 ppb) and PM_{2.5} (5.2 µg/m³) exposure with 95% CI. Adjusts for age, sex, pubertal stage, season of testing (warm/cold), body fat%, and social position. N=429

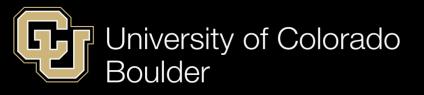
Toledo-Corral* and Alderete* et al., Ped. Obesity, 2018

Longitudinal Study Among Overweight/Obese Hispanic Youth from Urban Los Angeles, CA

Exposures had Effects Comparable to a 5% Increase in Body Fat Percent at Age 18


	Long-Term NO ₂ and PM _{2.5}	Body Fat % (+5%)
Insulin Sensitivity	-13% to -21.6%	-16.7%
Acute Insulin Response	+28.5%	+10.2%
β-cell function (DI)	-13%	-6.9%

Estimated effects are shown as a %difference with 95% confidence interval (CI) for a **1-SD increase in NO₂ (5 ppb), 1-SD increase in PM_{2.5} (4 µg/m³),** or a 5% increase in body fat% for insulin sensitivity, acute insulin response to glucose, and disposition index (DI). For body fat%, models adjusted for age, sex, Tanner stage, study wave, year, and social position. Average of 3 years of follow-up.



Alderete et al., Diabetes 2017

<u>Covariates</u>: Early Life Exposure to Air Pollution and Risk Factors for Type 2 Diabetes

- Age and Sex: 100%
- Socio-economic status (SES): 75%
- **Puberty:** 50%
- Body mass index (BMI): 63%
- Physical Activity/Diet: 50%
- Body Fat (BF) Percent: 25%
- Vegetation: 13%

8 Studies Included: Calderón-Garcidueñas et al. 2015; Poursafa et al., 2014; Ghosh et al. 2017; Kelishadi et al., 2009; Thiering et al., 2013, Thiering et al., 2016, Toledo-Corral & Alderete et al., 2018, Alderete et al., 2017

SHS = secondhand smoke

Exposure Assessment and Multi-Pollutant Models

Exposure Assessment Methods:

- Traffic Density / Distance to Roadways
- Modeled NO_{x} (e.g., CALINE, Dispersion) •
- Ambient Monitoring Stations (e.g., LUR, IDW) lacksquare

Very few studies examined multi-pollutant models...

7 Studies Included: Calderón-Garcidueñas et al. 2015; Ghosh et al. 2017; Kelishadi et al., 2009; Thiering et al., 2013, Thiering et al., 2016, Toledo-Corral & Alderete et al., 2018, Alderete et al., 2017

 NO_{y} = nitrogen oxides CALINE = California Line Source Dispersion Model LUR = land use regression IDW = inverse distance weighted

Child Susceptibility to Air Pollution: Risk Factors for Type 2 Diabetes

Studies suggest certain groups of youth are more susceptible:

BMI = body mass index; SI = insulin sensitivity; DI = β -cell function; HOMA-IR = Homeostatic Model Assessment of Insulin Resistance; NHB = non-Hispanic Black; SES = socioeconomic status

Race/Ethnicity

个Risk Factors: NHB, Hispanic

Thiering et al., 2016, Toledo-Corral & Alderete et al., 2018, Alderete et al., 2017

Summary: Exposure to Air Pollutants and Type 2 Diabetes in Children

- Short- and long-term exposures to ambient and near-roadway pollution play a role in glucose metabolism and the pathogenesis of type 2 diabetes in youth.
- Emerging evidence indicates that exposure to air pollutants has stronger effects in **susceptible populations** (e.g., obesity, existing metabolic dysfunction).

Overall Conclusions

- A growing body of literature **supports** an independent role of exposure to air pollutants in:
 - Childhood obesity
 - Pathophysiology of type 2 diabetes
- Specific pollutant sources and chemical components of the urban air mixture responsible for the observed effects remain uncertain
- Exact mechanisms warrant further investigation

Acknowledgements

University of Colorado Boulder

•Maximillian Bailey •Laura Wild

•Noopur Naik

University of Southern California

•Frank D. Gilliland, MD, PhD •Kiros Berhane, PhD •Zhanghua Chen, PhD •Rima Habre, ScD

Sonoma Technology

•Fred W. Lurmann

Children's Hospital Los Angeles

•Michael Goran, PhD

California State University, Northridge


•Claudia Toledo-Corral, MPH, PhD

Participants and Study Staff USC Clinical Trials Unit

Funding Sources

NIH NIEHS K99/R00 ES027853 **NIH NIEHS T32ES013678**

Contact Information

@tanya24lynn