Setting Ambient Air Quality Standards The role of Air Pollution and Health Research in Informing Policy Action

> Bob O'Keefe Health Effects Institute

Workshop on Air Pollution and Health in East Africa Nairobi, Kenya March 29, 2023

Trusted Science • *Cleaner Air* • *Better Health*

Setting Ambient Standards is a Key First Step

Assessing Status Measuring Progress -AQ Monitoring -Health Effects

<u>Setting Standards</u> <u>and Objectives</u> -Ambient AQ Standards -Critical Ecosystem Loads

Designing and Implementing Control Strategies -Identifying key sources -Controlling Emissions -Anticipating Growth

US National Academy of Sciences Report Air Quality Management in the United States http://books.nap.edu/catalog/10728.html

1. Is there a Health Hazard From Exposure to Air Pollution?

Many forms of studies can help inform this:

- *Daily population studies* examining relationship between exposures and certain health outcomes:
 - E.g., asthma hospitalization, premature birth, mortality (deaths), and more
- Studies of Long-term Effects (e.g. cohort and panel studies) examining how exposures do or do not affect a population of carefully selected set of participants:
 - E.g., children, pregnant mothers, older people

Eric Coker^{a b} & 🛛 Achilles Katamba ^c 🖾 Samuel Kizito ^c 🖾 Brenda Eskenazi ^b 🖾

<u>|. Lucian Davis ^{d e} 🛛</u>

Example: Recent Global Mortality Studies Provide Consistent Evidence of Long -Term Effects

All-cause mortality and PM2.5

Author(s) and Year	Study		Weights RR [95% CI]
Cakmak, 2018	1991 CanCHEC	F1	2.46% 1.16 [1.08, 1.25]
Pinault, 2017	2001 CanCHEC	H#H	7.12% 1.18 [1.15, 1.21]
Turner, 2016	ACS-CPS II	P	8.62% 1.07 [1.06, 1.09]
Weichenthal, 2014	AHS	F	0.33% 0.95 [0.76, 1.19]
Mcdonnell, 2000	AHSMOG	ı ∔_ •−−4	1.38% 1.09 [0.98, 1.21]
Enstrom, 2005	CA CPS I	in in the second s	8.39% 1.01 [0.99, 1.03]
Ostro, 2015	California Teachers Study	r ja 1	5.62% 1.01 [0.97, 1.05]
Pinault, 2016	CCHS-Mortality Cohort	⊢ ⊷-1	3.40% 1.26 [1.19, 1.34]
Yin, 2017	Chinese men	•	9.42% 1.09 [1.08, 1.10]
Tseng, 2015	civil servants cohort	⊢ <u> </u>	0.29% 0.92 [0.72, 1.17]
Villeneuve, 2015	CNBSS	⊢ •−-1	2.77% 1.12 [1.05, 1.20]
Carey, 2013	English national cohort	ı і	0.96% 1.11 [0.98, 1.26]
Beelen, 2014	ESCAPE	⊢ _+	1.43% 1.14 [1.03, 1.27]
Bentayeb, 2015	Gazel	ı <u>∔</u> i	0.62% 1.16 [0.98, 1.36]
Lepeule, 2012	Harvard Six Cities	↓ → • →	2.87% 1.14 [1.07, 1.22]
Puett, 2011	Health Professionals Follow-Up Study	⊢ <u></u>	0.55% 0.86 [0.72, 1.02]
Yang, 2018	HongKong elderly	⊢ =-1	4.67% 1.06 [1.01, 1.10]
Di, 2017	Medicare	•	9.50% 1.08 [1.08, 1.09]
Parker, 2018	NHIS	i ¦∎_ i	4.72% 1.03 [0.99, 1.08]
Hart, 2015	NHS	_ ⊢ • −	2.36% 1.13 [1.05, 1.22]
Thurston, 2016	NIH-AARP) = 1	7.22% 1.03 [1.01, 1.06]
Beelen, 2008	NLC S-AIR	r ∔ 1	1.80% 1.06 [0.97, 1.16]
Badaloni, 2017	Rome longitudinal study	} ≖ -	6.50% 1.05 [1.02, 1.08]
Hart, 2011	trucking companies	<u> </u> ⊢•−→	2.57% 1.10 [1.02, 1.18]
Bowe, 2018	U.S. veterans	⊢ •-1	4.42% 1.08 [1.03, 1.13]
RE Model Q = 216.9 (p < 0.01); τ^2 = 4.8e-04; I ² = 88.9%		*	100.00% 1.08 [1.06, 1.09] (1.05, 1.11)
	org/10.1016/i.onvint 2020.105974	0.67 0.82 1 1.22 1.49	

Chen and Hoek (2020), https://doi.org/10.1016/j.envint.2020.105974

Risk Ratio per 10 µg/m3

2. At what **exposure level** do effects occur?

This requires evidence of the Concentration Response (C-R) relationship:

- Detailed estimates of:
 - Exposures across an entire population
 - Health status and outcomes
 - E.g., mortality, lung cancer incidence

Draws on a large worldwide data set, but gaps remain in Africa

One example of the "Concentration Response Relationship"

Ambient Particulate Air Pollution and Daily Mortality in 652 Cities

 $PM_{2.5}$

- Recent paper from Liu et al in the New England Journal of Medicine
- Times series studies in 652 cities in 24 countries
 - including China, Africa, Latin America
- Strong PM2.5 associations below US NAAQS, WHO AQG
 - Steeper curve at lowest levels

Using Evidence to Set Air Quality Standards and Guidelines

US, WHO, India, and Much of the Rest of the World, has set PM and Ozone Ambient Air Quality Standards (in μ g/m³)

Pollutant	WHO AQG (Interim Targets)	US EPA	EU	China Revised 2016	India Revised 2009
PM10 Annual	10 (70-50-30-20)		40	70	60
PM10 Daily	45 (150-100-75-50)	150	50	150	١
PM2.5 Annual	5 (35-25-15-10)	12\ <mark>8-10?</mark>	25\ <mark>10</mark>	35	40\ <mark>?</mark>
PM2.5 Daily	15 (75-50-37.5-25)	35		7	60
Ozone 8- hour	100 (160-120)	~140 (70ppb)	100***	160	100

***target value, not limit value

WHO Global Air Quality Guidelines

Scientific evidence and decision-making process

Dr Dorota Jarosinska, WHO European Centre for Environment and Health HEI Annual Conference, 26-28 June 2022

European Region

www.who.int/europe

What are the WHO Global AQGs

 Based on extensive scientific evidence, the AQGs identify the levels of air quality necessary to protect public health worldwide.

- Provide recommendations on air quality guideline levels (and interim targets) for PM_{2,5}, PM₁₀, O₃, NO₂, SO₂ and CO, and qualitative good practice statements for certain types of particulate matter.
- Guideline levels can be used as an **evidence-informed reference** to help decision-makers in setting legally binding standards and goals for air quality management.
- They are an **instrument to design effective measures** to achieve reduction of air pollution and, therefore, protect human health.
- Different Countries have taken different approaches to setting standards

China chose an interim target

Summary of recommended AQG levels and interim targets

Pollutant	Averaging time	IT1	IT2	173	IT4	AQG level
PM _{2.5} , μg/m³	Annual	35	25	15	10	5
ΡΜ _{2,5} , μg/m³	24-hour ^a	75	50	37.5	25	15
PM ₁₀ , μg/m³	Annual	70	50	30	20	15
PM ₁₀ , μg/m³	24-hourª	150	100	75	50	45
O₃, µg/m³	Peak season ^b	100	70	-	-	60
O₃, µg/m³	8-hourª	160	120	-	-	100
NO₂, μg/m³	Annual	40	30	20	-	10
NO₂, μg/m³	24-hourª	120	50	-	-	25
SO₂, μg/m³	24-hourª	125	50	-	-	40
CO, mg/m³	24-hour ^a	7	_	-	_	4

China's Class 2 Annual AQ Standard

Air quality guideline levels for both long- and short-term exposure in relation to critical health outcomes

Interim targets to guide reduction efforts for the achievement of the air quality guideline levels

Good practice statements on the management of certain types of particulate matter for which evidence is insufficient to derive quantitative air quality guideline levels, but points to their health relevance

Different uptake of AQGs in AAQS across the world

		COUNTRI STANDAR	-	_			
	COUNTRIES IN THE	AT LEAST ONE POLLUTANT AND AVERAGING TIME		COUNTRIES WITHOUT STANDARDS		COUNTRIES WITH NO INFORMATION	
WHO REGION	REGION (N)	n	%	n	%	n	%
African Region	47	17	36	21	45	9	19
Region of the Americas	35	20	57	13	37	2	6
South-East Asian Region	11	7	64	3	27	1	9
European Region	53	50	94	2	4	1	2
Eastern Mediterranean Region	21	11	52	1	5	9	43
Western Pacific Region	27	12	44	13	48	2	7
Total	194	117	60	53	27	24	12
	0017						

Kutlar Joss et al., 2017

Growing Evidence of Air Pollution and Health in East Africa Over 80 studies in HEI's new interactive data base

https://www.healtheffects.org/global/interactive-database/east-africa

3. How can we test which **sources** contribute to health hazards?

- Requires source-specific estimates of emissions
- And populations that are, *and are not,* exposed to the source
- May be challenging in high pollution environments where there are *many* sources, and everyone is exposed

But ultimately such studies can play a key role in targeting source controls.

Informing Solutions: Global Burden of Disease from Major Air Pollution Sources (GBD MAPS)

GBD-MAPS Global is identifying which sources/sectors contribute most to air pollution and health in 195 countries

Relies on AQ monitors, satellite data and models

Local data is key to informed air quality management

Full Data Available through State of

South Asia East Asia Central Sub-Saharan Africa North Africa and Middle East Eastern Sub-Saharan Africa Southern Sub-Saharan Africa Central Europe Southeast Asia Andean Latin America Western Sub-Saharan Africa Eastern Europe Central Asia Central Latin America High-income Asia Pacific Southern Latin America Western Europe **Tropical Latin America** High-income North America Caribbean Australasia Oceania -20 WHO Regions

Setting Standards Sets the Stage for the Next Step:

Assessing Status Measuring Progress -AQ Monitoring -Health Effects

Setting Standards and Objectives -Ambient AQ Standards -Critical Ecosystem Loads/

Designing and Implementing Control Strategies -Identifying key sources -Controlling Emissions -Anticipating Growth

Health impact of China's Air Pollution Prevention and Control Action Plan: an analysis of national air quality monitoring and mortality data

Jing Huang, Xiaochuan Pan, Xinbiao Guo, Guoxing Li

- China took action starting in 2013
- Air Pollution went Down
- Deaths declined and Years of life were saved

Lancet Planetary Health July 2018

Figure 3: Average concentrations of the six criteria air pollutants in the 74 key cities, as percentages of the grade II levels set by the CAAQS, 2013-17

Figure 5: Number of avoided deaths and YLL attributable to air quality improvements in the three key regions in China from 2014 to 2017 compared with 2013

Conclusions

- Achieving Clean Air Through Effective Air Quality Management is a Long-term Commitment
- Setting AQ Standards relies on a combination of global and local studies and international assessments (WHO AQG's, Euro limit values, US EPA NAAQS)
- Understanding emissions and population exposures at the regional and local levels key to targeting sources of greatest concern to public health
- Assessing progress over time is key to ensuring that regulatory and other interventions are working to protect public health
- Enhanced air quality monitoring needed to inform better health studies, exposure assessment, source contributions and track progress.

THANK YOU!

Robert OKeefe Health Effects Institute rokeefe@healtheffects.org

Trusted Science • *Cleaner Air* • *Better Health*

A Recent Example: HEI's Report on CA Goods Movement (Meng et al May 2021)

Compare changes in 10 California counties from pre-policy to postpolicy comparing:

- Goods Movement Corridors to Non-Goods Movement Corridors
- NO2 Exposures went down
- Hospitalizations Went Down

Commentary Figure 1

https://www.healtheffects.org/publication/improvements-air-quality-andhealth-outcomes-among-california-medicaid-enrollees-due Health Effects of exposure to PM_{2.5}

Longstanding concern about effects on the lung

But strong evidence of an association between long- and short-term exposure to PM_{2.5} and heart disease, stroke, brain disease, birth outcomes

Growing evidence from India, China, elsewhere in Asia

Particulate matter enters our respiratory (lung) system through the nose and throat.

2 3 The larger particulate matter (PM10) is eliminated through coughing, sneezing and swallowing.

PM2.5 can penetrate deep into the lungs. It can travel all the way to the alveoli, causing lung and heart problems, and delivering harmful chemicals to the blood system.

State of Global Air 2020

www.stateofglobalair.org

Based on the Annual Global Burden of Disease 2019*

Making data available on air pollution and health

For every country in the world From 1970 to 2019

* Published in *The Lancet October 15, 2020*

Estimating burden of disease from air pollution

Global population exposures

Disease-specific burden

STATE OF

A SPECIAL REPORT ON GLOBAL EXPOS

Putting air pollution in perspective How does it compare to other risks

Air pollution is the 4th leading risk factor for premature death and disability;

In 2019, it accounted for **12% of global deaths**.

Global ranking of risk factors by total number of deaths from all causes in 2019.

www.stateofglobalair.org 24

III 💿 IHME

Science Plays an Important Role in Setting Standards

Many Sources of PM

COAL-FIRED POWER PLANT EMISSIONS HOUSEHOLD BURNING **VEHICLE EXHAUST FACTORYEMISSIONS REFUSE BURNING SMELTERS CROP BURNING FOREST FIRES**

India set a standard in 2009; now under review

TABLE 2: NATIONAL AMBIENT AIR QUALITY STANDARDS (NAAQS)

			Concentration in Ambient Air			
Sr. No	Pollutants	Time Weighted Average	Industrial, Residential, Rural, and Other Areas	Ecologically Sensitive Area		
1	Sulphur dioxide (SO ₂),	Annual*	50	20		
	µg/m³	24 hours**	80	80		
2	Nitrogen dioxide (NO ₂),	Annual*	40	30		
	µg/m³	24 hours**	80	80		
3	Particulate matter	Annual*	60	60		
	(Size <10 μm) or PM ₁₀ μg/m³	24 hours**	100	100		
4	Particulate matter	Annual*	40	40		
	(Size<2.5 μm) or PM _{2.5} μg/m³	24 hours**	60	60		
5	Ozone (O₃), μg/m³	8 hours**	100	100		
		1 hours **	180	180		
6	Lead (Pb), µg/m³	Annual*	0.50	0.50		
		24 hours**	1.0	1.0		
7	Carbon monoxide (CO),	8 hours**	02	02		
	mg/m³	1 hours **	04	04		
8	Ammonia (NH ₃), µg/m³	Annual*	100	100		
	, in the second s	24 hours**	400	400		
9	Benzene (C6 H6) , µg/m³	Annual*	05	05		
10	Benzo(a) pyrene (BaP)- particulate phase only, ng/m³	Annual*	01	01		
11	Arsenic (As), ng/m³	Annual*	06	06		
12	Nickel (Ni), ng/m³	Annual*	20	20		

* Annual arithematic mean of minimum 104 measurements in a year at a particular site taken twice a week 24 hourly at uniform intervals

** 24 hourly or 08 hourly or 01 hourly monitored values, as applicable shall be complied with 98% of the time in a year. 2 % of the time may exceed the limits but not on two consecutive days of monitoring.

Setting Ambient Air Quality Standards

- Their key role in making progress on clean air
 - Studies Used to Set Standards Around the World
 - The Most Recent World Health Organization Air Quality Guidelines
 - Source Emissions, Impacts and use in Air Quality Management
 - Assessing Progress

4. Assessing whether AQ interventions have actually reduced health impacts:?

"Accountability" studies

- To better test and quantify the consequences of policy actions on air quality and health
- Can help inform whether air quality interventions actually reduced exposures and health impacts
- Potential to improve cost-benefit analyses of future actions
- Challenging to account for other changes in exposures and effects over long periods of time and specific source health impacts

