Ozone & Oxidants

This page has a list of publications and news articles related to Air Pollution - Ozone and Oxidants. Find more information about our research on Air Pollution.

Research Report 142
Klea Katsouyanni
Jonathan M Samet
H Ross Anderson
Richard Atkinson
Alain Le Tertre
Sylvia Medina
Evangelia Samoli
Giota Touloumi
Richard T Burnett
Daniel Krewski
Timothy Ramsay
Francesca Dominici
Roger D Peng
Joel Schwartz
Antonella Zanobetti
October 2009

This report describes a unique collaboration among investigators from Europe, the United States, and Canada using existing data from three geographic areas and supported by HEI in collaboration with the European Commission. APHENA offered a large and diverse data set with which to address methodological as well as scientific issues about the relationships between PM10, ozone, and mortality and morbidity that were the subject of lively debates at the time the project was launched. 

Communication 13
Health Effects Institute
October 2008

The September issue of Environmental Health Perspectives published the first systematic presentation of the HEI-funded PAPA studies in Bangkok, Hong Kong, Shanghai, and Wuhan, as well as a combined analysis and accompanying editorial. These articles have been reprinted and are currently available as HEI Communication 13. The detailed studies and accompanying HEI commentaries will be published by the Institute this spring.

Research Report 131
Petros Koutrakis
Helen H Suh
Jeremy A Sarnat
Kathleen Ward Brown
Brent A Coull
Joel Schwartz
December 2005

Dr. Koutrakis and his colleagues assessed the correlations between personal exposure to PM2.5 and gaseous copollutants and compare these measurements with those taken at central-site monitors. Three groups of possibly susceptible individuals (children, seniors, and individuals with chronic obstructive pulmonary disease) were recruited in two cities (Boston and Baltimore) in two seasons (summer and winter).

Research Report 125
James S Ultman
Abdellaziz Ben-Jebria
Steven F Arnold
November 2004

Dr James Ultman and colleagues at Pennsylvania State University recruited 32 men and 28 women to examine differences in ozone uptake in the lung. The subjects (all non smokers) first took a series of single breaths of air–ozone mixtures, which allowed the investigators to examine how ozone was distributed in the airways and where the major fraction of ozone was taken up. In a follow-up test, the subjects pedaled a bicycle ergometer to produce conditions of moderate exercise for one hour while breathing clean air, followed by a third test while breathing ozone at 0.25 ppm).

Research Report 109
Richard B Schlesinger
Mitchell Cohen
Terry Gordon
Christine Nadziejko
Judith T Zelikoff
Maureen Sisco
Jean F Regal
Margaret G Ménache
June 2002

Dr. Schlesinger and colleagues at the New York University School of Medicine used a well-established animal model of airway hyperresponsiveness (a heightened tendency of the bronchial airways to constrict) and allergic asthma to determine whether ozone can induce airway hyperresponsiveness or exacerbate existing airway hyperresponsiveness. Male and female guinea pigs were exposed to ozone concentrations comparable to levels to which humans are exposed during periods of ozone pollution.

Research Report 106
Lester Kobzik
Carroll-Ann W Goldsmith
Yao Yu Ning
Guozhong Qin
Bill Morgan
Amy Imrich
Joy Lawrence
GG Krishna Murthy
Paul J Catalano
December 2001

Dr. Lester Kobzik and colleagues at the Harvard School of Public Health used a mouse model of asthma to evaluate how inhaling pollutants affects the airways. The mice were sensitized to the allergen ovalbumin, which induces a lung condition in the mice similar to that found in people with asthma. The investigators hypothesized that exposure to concentrated ambient particles (CAPs) plus ozone would cause a synergistic (or greater-than-additive) response in the mice.

Research Report 90
Mark W Frampton
William A Pryor
Rafael Cueto
Christopher Cox
Paul E Morrow
Mark J Utell
November 1999

Dr. Pryor and colleagues at Louisiana State University developed methods for measuring ozone reaction products in in vitro models of lung lining fluids exposed to ozone and in lung fluids from rats exposed to ozone. During the study, Dr. Mark Frampton of the University of Rochester provided Pryor with lung fluids from humans exposed to air or ozone under controlled conditions. Frampton and colleagues exposed exercising smokers and nonsmokers to filtered air or to 0.22 parts per million (ppm) ozone for four hours.

Research Report 85
Steven R Kleeberger
Malinda Longphre
Clarke G Tankersley
April 1999

Dr. Kleeberger and colleagues at Johns Hopkins University compared ozone-induced inflammation, epithelial cell injury, and epithelial cell proliferation (a marker of cell injury) in three types of mice: mice with a normal content of mast cells, mutant mice without mast cells, and mutant mice whose mast cells were repleted by a bone marrow transplant from normal mice. Each group of mice was exposed to clean air or to ozone for varying lengths of time.

Research Report 65-XIII
Kent E Pinkerton
Barbara L Weller
Margaret G Ménache
Charles G Plopper
June 1998

Ozone, a common outdoor air pollutant, is a highly reactive gas and a major component of smog. A public health concern is that prolonged exposure to ozone might damage the airways and contribute to the development of noncancerous respiratory diseases. To examine this issue, the Health Effects Institute collaborated with the NTP to provide HEI-funded investigators access to animals that underwent the same rigorously controlled ozone exposure and quality assurance processes along with the animals used for NTP studies. One of the NTP/HEI investigator groups, Dr.

Research Report 82
Edward L Avol
William Navidi
Edward B Rappaport
John M Peters
May 1998

Dr. John Peters and colleagues of the University of Southern California School of Medicine compared the lung function, respiratory symptoms, activity levels, and bronchodilator use of 10- to 12-year-old healthy, asthmatic, and wheezy children. They conducted the study in Southern California during mid-spring (when ozone levels were expected to be low) and late summer (when ozone levels were expected to be high).